Suppr超能文献

静息态功能磁共振成像中动态因果模型的结构效度验证。

Construct validation of a DCM for resting state fMRI.

作者信息

Razi Adeel, Kahan Joshua, Rees Geraint, Friston Karl J

机构信息

The Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK; Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan.

Sobell Department of Motor Neuroscience & Movement Disorders, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.

出版信息

Neuroimage. 2015 Feb 1;106:1-14. doi: 10.1016/j.neuroimage.2014.11.027. Epub 2014 Nov 21.

Abstract

Recently, there has been a lot of interest in characterising the connectivity of resting state brain networks. Most of the literature uses functional connectivity to examine these intrinsic brain networks. Functional connectivity has well documented limitations because of its inherent inability to identify causal interactions. Dynamic causal modelling (DCM) is a framework that allows for the identification of the causal (directed) connections among neuronal systems--known as effective connectivity. This technical note addresses the validity of a recently proposed DCM for resting state fMRI--as measured in terms of their complex cross spectral density--referred to as spectral DCM. Spectral DCM differs from (the alternative) stochastic DCM by parameterising neuronal fluctuations using scale free (i.e., power law) forms, rendering the stochastic model of neuronal activity deterministic. Spectral DCM not only furnishes an efficient estimation of model parameters but also enables the detection of group differences in effective connectivity, the form and amplitude of the neuronal fluctuations or both. We compare and contrast spectral and stochastic DCM models with endogenous fluctuations or state noise on hidden states. We used simulated data to first establish the face validity of both schemes and show that they can recover the model (and its parameters) that generated the data. We then used Monte Carlo simulations to assess the accuracy of both schemes in terms of their root mean square error. We also simulated group differences and compared the ability of spectral and stochastic DCMs to identify these differences. We show that spectral DCM was not only more accurate but also more sensitive to group differences. Finally, we performed a comparative evaluation using real resting state fMRI data (from an open access resource) to study the functional integration within default mode network using spectral and stochastic DCMs.

摘要

最近,人们对表征静息态脑网络的连通性产生了浓厚兴趣。大多数文献使用功能连通性来研究这些内在脑网络。由于功能连通性本身无法识别因果相互作用,其局限性已得到充分记录。动态因果模型(DCM)是一个框架,可用于识别神经元系统之间的因果(定向)连接,即有效连通性。本技术说明探讨了最近提出的用于静息态功能磁共振成像(fMRI)的DCM的有效性,该有效性以其复交叉谱密度来衡量,即谱DCM。谱DCM与(另一种)随机DCM的不同之处在于,它使用无标度(即幂律)形式对神经元波动进行参数化,使神经元活动的随机模型具有确定性。谱DCM不仅能高效估计模型参数,还能检测有效连通性、神经元波动的形式和幅度或两者的组间差异。我们比较并对比了谱DCM和随机DCM模型,以及隐藏状态上的内源性波动或状态噪声。我们首先使用模拟数据来确定这两种方案的表面效度,并表明它们能够恢复生成数据的模型(及其参数)。然后,我们使用蒙特卡罗模拟根据均方根误差来评估这两种方案的准确性。我们还模拟了组间差异,并比较了谱DCM和随机DCM识别这些差异的能力。我们表明,谱DCM不仅更准确,而且对组间差异更敏感。最后,我们使用真实的静息态fMRI数据(来自一个开放获取资源)进行了比较评估,以使用谱DCM和随机DCM研究默认模式网络内的功能整合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2251/4295921/eb755a46561a/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验