Suppr超能文献

动态因果建模中静息态 fMRI 的光谱采样算法。

A spectral sampling algorithm in dynamic causal modelling for resting-state fMRI.

机构信息

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Hum Brain Mapp. 2023 Jun 1;44(8):2981-2992. doi: 10.1002/hbm.26256. Epub 2023 Mar 16.

Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) is widely utilized to study the directed influences among neural populations which were called effective connectivity (EC), and the spectral dynamic causal modelling (spDCM) is the state-of-the-art framework to identify them. However, spDCM used variational Laplace to approximate the posterior density by maximizing the free energy, which might underestimate the variability of posterior density and get locked to the local minima. A spectral sampling algorithm (SS-DCM) was proposed to improve the estimation accuracy of the dynamic causal model for rs-fMRI. In SS-DCM, a naïve Bayesian model was constructed in the spectral domain, which described the probabilistic relationship between the sampled parameters and cross spectra of the observed blood oxygen level-dependent signals, and the parameters were sampled using randomly walked Markov Chain Monto Carlo scheme. The root mean square errors of the estimation of EC and hemodynamic parameters of SS-DCM, spDCM and generalized filter scheme were compared in the synthetic data, and SS-DCM was the most accurate and stable. A comparative evaluation using empirical rs-fMRI data was performed to study the EC pattern of the default mode network and compare the accuracy of classification between typically developed subjects and inattentive attention deficit and hyperactivity disorder patients. The results showed high consistency of positivity and negativity of EC between spDCM and SS-DCM, and SS-DCM also provided higher classification accuracy. It is highlighted that SS-DCM improves the accuracy of the estimation of EC and provides accurate information of discrepancies between diseased and healthy subjects using rs-fMRI.

摘要

静息态功能磁共振成像 (rs-fMRI) 被广泛用于研究被称为有效连接 (EC) 的神经群体之间的定向影响,而谱动态因果建模 (spDCM) 是识别它们的最新框架。然而,spDCM 使用变分拉普拉斯通过最大化自由能来逼近后验密度,这可能会低估后验密度的可变性,并锁定在局部最小值。提出了一种谱抽样算法 (SS-DCM) 来提高 rs-fMRI 动态因果模型的估计精度。在 SS-DCM 中,在谱域中构建了一个朴素贝叶斯模型,该模型描述了所采样参数与观察到的血氧水平依赖信号的交叉谱之间的概率关系,并且使用随机游走马尔可夫链蒙特卡罗方案对参数进行采样。在合成数据中比较了 SS-DCM、spDCM 和广义滤波器方案对 EC 和血液动力学参数估计的均方根误差,SS-DCM 最准确和稳定。使用经验 rs-fMRI 数据进行了比较评估,以研究默认模式网络的 EC 模式,并比较典型发育受试者和注意力不集中注意力缺陷多动障碍患者之间的分类准确性。结果表明,spDCM 和 SS-DCM 之间的 EC 正性和负性具有高度一致性,SS-DCM 还提供了更高的分类准确性。突出显示 SS-DCM 提高了 EC 的估计精度,并使用 rs-fMRI 提供了疾病和健康受试者之间差异的准确信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdcf/10171543/93fa2e92bb47/HBM-44-2981-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验