The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London WC1N 3BG, UK.
Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
Neuroimage. 2014 Jul 1;94(100):396-407. doi: 10.1016/j.neuroimage.2013.12.009. Epub 2013 Dec 15.
This technical note introduces a dynamic causal model (DCM) for resting state fMRI time series based upon observed functional connectivity--as measured by the cross spectra among different brain regions. This DCM is based upon a deterministic model that generates predicted crossed spectra from a biophysically plausible model of coupled neuronal fluctuations in a distributed neuronal network or graph. Effectively, the resulting scheme finds the best effective connectivity among hidden neuronal states that explains the observed functional connectivity among haemodynamic responses. This is because the cross spectra contain all the information about (second order) statistical dependencies among regional dynamics. In this note, we focus on describing the model, its relationship to existing measures of directed and undirected functional connectivity and establishing its face validity using simulations. In subsequent papers, we will evaluate its construct validity in relation to stochastic DCM and its predictive validity in Parkinson's and Huntington's disease.
本技术说明介绍了一种基于观察到的功能连接(通过不同脑区之间的互谱测量)的静息态 fMRI 时间序列的动态因果模型(DCM)。该 DCM 基于一种确定性模型,该模型从分布神经元网络或图中耦合神经元波动的生物物理上合理的模型生成预测的交叉谱。实际上,该方案从隐藏的神经元状态中找到最佳的有效连接,从而解释了观察到的血流动力学响应之间的功能连接。这是因为互谱包含了区域动力学之间(二阶)统计相关性的所有信息。在本说明中,我们专注于描述模型,其与现有定向和无向功能连接测量的关系,并使用模拟来确定其表面有效性。在后续论文中,我们将评估其与随机 DCM 的结构有效性及其在帕金森病和亨廷顿病中的预测有效性。