Suppr超能文献

贝叶斯计算通过依赖于尖峰时间的可塑性出现在一般的皮质微电路中。

Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity.

机构信息

Institute for Theoretical Computer Science, Graz University of Technology, Graz, Austria.

出版信息

PLoS Comput Biol. 2013 Apr;9(4):e1003037. doi: 10.1371/journal.pcbi.1003037. Epub 2013 Apr 25.

Abstract

The principles by which networks of neurons compute, and how spike-timing dependent plasticity (STDP) of synaptic weights generates and maintains their computational function, are unknown. Preceding work has shown that soft winner-take-all (WTA) circuits, where pyramidal neurons inhibit each other via interneurons, are a common motif of cortical microcircuits. We show through theoretical analysis and computer simulations that Bayesian computation is induced in these network motifs through STDP in combination with activity-dependent changes in the excitability of neurons. The fundamental components of this emergent Bayesian computation are priors that result from adaptation of neuronal excitability and implicit generative models for hidden causes that are created in the synaptic weights through STDP. In fact, a surprising result is that STDP is able to approximate a powerful principle for fitting such implicit generative models to high-dimensional spike inputs: Expectation Maximization. Our results suggest that the experimentally observed spontaneous activity and trial-to-trial variability of cortical neurons are essential features of their information processing capability, since their functional role is to represent probability distributions rather than static neural codes. Furthermore it suggests networks of Bayesian computation modules as a new model for distributed information processing in the cortex.

摘要

神经网络的计算原理,以及突触权重的尖峰时间依赖可塑性(STDP)如何产生和维持其计算功能,目前尚不清楚。之前的工作表明,软胜者通吃(WTA)电路,其中通过中间神经元抑制锥体神经元,是皮质微电路的常见模式。我们通过理论分析和计算机模拟表明,通过 STDP 结合神经元兴奋性的活性依赖性变化,在这些网络模式中诱导贝叶斯计算。这种新兴的贝叶斯计算的基本组成部分是来自神经元兴奋性适应的先验概率,以及通过 STDP 在突触权重中创建的隐藏原因的隐含生成模型。事实上,一个令人惊讶的结果是,STDP 能够近似于一种强大的原则,即通过将这种隐含的生成模型拟合到高维尖峰输入中来拟合这些隐含的生成模型:期望最大化。我们的结果表明,皮质神经元的实验观察到的自发活动和试验间变异性是其信息处理能力的重要特征,因为它们的功能作用是表示概率分布,而不是静态的神经编码。此外,它还表明,贝叶斯计算模块网络作为皮质中分布式信息处理的新模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6237/3636028/de3fecd0fd13/pcbi.1003037.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验