Suppr超能文献

生存分析的关联向量机。

Relevance Vector Machine for Survival Analysis.

出版信息

IEEE Trans Neural Netw Learn Syst. 2016 Mar;27(3):648-60. doi: 10.1109/TNNLS.2015.2420611. Epub 2015 Apr 22.

Abstract

An accelerated failure time (AFT) model has been widely used for the analysis of censored survival or failure time data. However, the AFT imposes the restrictive log-linear relation between the survival time and the explanatory variables. In this paper, we introduce a relevance vector machine survival (RVMS) model based on Weibull AFT model that enables the use of kernel framework to automatically learn the possible nonlinear effects of the input explanatory variables on target survival times. We take advantage of the Bayesian inference technique in order to estimate the model parameters. We also introduce two approaches to accelerate the RVMS training. In the first approach, an efficient smooth prior is employed that improves the degree of sparsity. In the second approach, a fast marginal likelihood maximization procedure is used for obtaining a sparse solution of survival analysis task by sequential addition and deletion of candidate basis functions. These two approaches, denoted by smooth RVMS and fast RVMS, typically use fewer basis functions than RVMS and improve the RVMS training time; however, they cause a slight degradation in the RVMS performance. We compare the RVMS and the two accelerated approaches with the previous sparse kernel survival analysis method on a synthetic data set as well as six real-world data sets. The proposed kernel survival analysis models have been discovered to be more accurate in prediction, although they benefit from extra sparsity. The main advantages of our proposed models are: 1) extra sparsity that leads to a better generalization and avoids overfitting; 2) automatic relevance sample determination based on data that provide more accuracy, in particular for highly censored survival data; and 3) flexibility to utilize arbitrary number and types of kernel functions (e.g., non-Mercer kernels and multikernel learning).

摘要

一种加速失效时间 (AFT) 模型已被广泛用于分析删失生存或失效时间数据。然而,AFT 对生存时间和解释变量之间的对数线性关系施加了限制。在本文中,我们引入了一种基于威布尔 AFT 模型的相关向量机生存 (RVMS) 模型,该模型允许使用核框架自动学习输入解释变量对目标生存时间的可能非线性影响。我们利用贝叶斯推理技术来估计模型参数。我们还介绍了两种加速 RVMS 训练的方法。在第一种方法中,采用了有效的平滑先验,从而提高了稀疏度。在第二种方法中,采用了快速边际似然最大化程序,通过候选基函数的顺序添加和删除来获得生存分析任务的稀疏解。这两种方法,分别称为平滑 RVMS 和快速 RVMS,通常比 RVMS 使用更少的基函数,并提高了 RVMS 的训练时间;然而,它们会导致 RVMS 性能略有下降。我们在一个合成数据集和六个真实数据集上比较了 RVMS 和两种加速方法与以前的稀疏核生存分析方法。所提出的核生存分析模型在预测方面被发现更准确,尽管它们受益于额外的稀疏性。我们提出的模型的主要优点是:1)额外的稀疏性,导致更好的泛化和避免过拟合;2)基于数据的自动相关样本确定,提供更高的准确性,特别是对于高度删失的生存数据;3)灵活性,可利用任意数量和类型的核函数(例如,非 Mercer 核和多核学习)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验