Suppr超能文献

α细胞中膜下ATP和Ca2+动力学:胰高血糖素分泌的意外信号传导。

Submembrane ATP and Ca2+ kinetics in α-cells: unexpected signaling for glucagon secretion.

作者信息

Li Jia, Yu Qian, Ahooghalandari Parvin, Gribble Fiona M, Reimann Frank, Tengholm Anders, Gylfe Erik

机构信息

*Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; and Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom.

*Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; and Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom

出版信息

FASEB J. 2015 Aug;29(8):3379-88. doi: 10.1096/fj.14-265918. Epub 2015 Apr 24.

Abstract

Cytoplasmic ATP and Ca(2+) are implicated in current models of glucose's control of glucagon and insulin secretion from pancreatic α- and β-cells, respectively, but little is known about ATP and its relation to Ca(2+) in α-cells. We therefore expressed the fluorescent ATP biosensor Perceval in mouse pancreatic islets and loaded them with a Ca(2+) indicator. With total internal reflection fluorescence microscopy, we recorded subplasma membrane concentrations of Ca(2+) and ATP ([Ca(2+)]pm; [ATP]pm) in superficial α- and β-cells of intact islets and related signaling to glucagon and insulin secretion by immunoassay. Consistent with ATP's controlling glucagon and insulin secretion during hypo- and hyperglycemia, respectively, the dose-response relationship for glucose-induced [ATP]pm generation was left shifted in α-cells compared to β-cells. Both cell types showed [Ca(2+)]pm and [ATP]pm oscillations in opposite phase, probably reflecting energy-consuming Ca(2+) transport. Although pulsatile insulin and glucagon release are in opposite phase, [Ca(2+)]pm synchronized in the same phase between α- and β-cells. This paradox can be explained by the overriding of Ca(2+) stimulation by paracrine inhibition, because somatostatin receptor blockade potently stimulated glucagon release with little effect on Ca(2+). The data indicate that an α-cell-intrinsic mechanism controls glucagon in hypoglycemia and that paracrine factors shape pulsatile secretion in hyperglycemia.

摘要

细胞质中的ATP和Ca(2+)分别参与了目前关于葡萄糖控制胰腺α细胞和β细胞分泌胰高血糖素和胰岛素的模型,但对于α细胞中ATP及其与Ca(2+)的关系知之甚少。因此,我们在小鼠胰岛中表达了荧光ATP生物传感器Perceval,并给它们加载了Ca(2+)指示剂。利用全内反射荧光显微镜,我们记录了完整胰岛表面α细胞和β细胞中亚细胞膜Ca(2+)和ATP的浓度([Ca(2+)]pm;[ATP]pm),并通过免疫测定将相关信号与胰高血糖素和胰岛素分泌联系起来。与ATP分别在低血糖和高血糖期间控制胰高血糖素和胰岛素分泌一致,与β细胞相比,α细胞中葡萄糖诱导的[ATP]pm生成的剂量反应关系向左偏移。两种细胞类型均显示[Ca(2+)]pm和[ATP]pm呈相反相位的振荡,这可能反映了耗能的Ca(2+)转运。尽管胰岛素和胰高血糖素的脉冲式释放相位相反,但α细胞和β细胞之间的[Ca(2+)]pm在同一相位同步。这种矛盾现象可以通过旁分泌抑制对Ca(2+)刺激的优先作用来解释,因为生长抑素受体阻断可有效刺激胰高血糖素释放,而对Ca(2+)影响很小。数据表明,一种α细胞内在机制在低血糖时控制胰高血糖素,旁分泌因子在高血糖时塑造脉冲式分泌。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b34/4539996/cadacad94daf/fasebj265918f1.jpg

相似文献

1
Submembrane ATP and Ca2+ kinetics in α-cells: unexpected signaling for glucagon secretion.
FASEB J. 2015 Aug;29(8):3379-88. doi: 10.1096/fj.14-265918. Epub 2015 Apr 24.
2
Glucose- and hormone-induced cAMP oscillations in α- and β-cells within intact pancreatic islets.
Diabetes. 2011 May;60(5):1535-43. doi: 10.2337/db10-1087. Epub 2011 Mar 28.
4
Glucose inhibits glucagon secretion by a direct effect on mouse pancreatic alpha cells.
Diabetologia. 2007 Feb;50(2):370-9. doi: 10.1007/s00125-006-0511-1. Epub 2006 Nov 29.
6
Free fatty acid receptor 4 inhibitory signaling in delta cells regulates islet hormone secretion in mice.
Mol Metab. 2021 Mar;45:101166. doi: 10.1016/j.molmet.2021.101166. Epub 2021 Jan 20.
8
Glucose controls glucagon secretion by directly modulating cAMP in alpha cells.
Diabetologia. 2019 Jul;62(7):1212-1224. doi: 10.1007/s00125-019-4857-6. Epub 2019 Apr 5.
9
Insulin regulates islet alpha-cell function by reducing KATP channel sensitivity to adenosine 5'-triphosphate inhibition.
Endocrinology. 2006 May;147(5):2155-62. doi: 10.1210/en.2005-1249. Epub 2006 Feb 2.
10
Oscillations of sub-membrane ATP in glucose-stimulated beta cells depend on negative feedback from Ca(2+).
Diabetologia. 2013 Jul;56(7):1577-86. doi: 10.1007/s00125-013-2894-0. Epub 2013 Mar 28.

引用本文的文献

2
Glucokinase (GCK) in diabetes: from molecular mechanisms to disease pathogenesis.
Cell Mol Biol Lett. 2024 Sep 8;29(1):120. doi: 10.1186/s11658-024-00640-3.
4
The endoplasmic reticulum plays a key role in α-cell intracellular Ca dynamics and glucose-regulated glucagon secretion in mouse islets.
iScience. 2024 Apr 5;27(5):109665. doi: 10.1016/j.isci.2024.109665. eCollection 2024 May 17.
5
Urocortin 3 contributes to paracrine inhibition of islet alpha cells in mice.
J Endocrinol. 2024 May 2;261(3). doi: 10.1530/JOE-24-0018. Print 2024 Jun 1.
6
Opticool: Cutting-edge transgenic optical tools.
PLoS Genet. 2024 Mar 22;20(3):e1011208. doi: 10.1371/journal.pgen.1011208. eCollection 2024 Mar.
7
Metabolic regulation of glucagon secretion.
J Endocrinol. 2023 Sep 8;259(1). doi: 10.1530/JOE-23-0081. Print 2023 Sep 1.
8
9
RhoA as a Signaling Hub Controlling Glucagon Secretion From Pancreatic α-Cells.
Diabetes. 2022 Nov 1;71(11):2384-2394. doi: 10.2337/db21-1010.
10
Pancreatic α and β cells are globally phase-locked.
Nat Commun. 2022 Jun 28;13(1):3721. doi: 10.1038/s41467-022-31373-6.

本文引用的文献

1
The somatostatin receptor in human pancreatic β-cells.
Vitam Horm. 2014;95:165-93. doi: 10.1016/B978-0-12-800174-5.00007-7.
2
Glucose regulation of glucagon secretion.
Diabetes Res Clin Pract. 2014 Jan;103(1):1-10. doi: 10.1016/j.diabres.2013.11.019. Epub 2013 Dec 5.
4
Oscillations of sub-membrane ATP in glucose-stimulated beta cells depend on negative feedback from Ca(2+).
Diabetologia. 2013 Jul;56(7):1577-86. doi: 10.1007/s00125-013-2894-0. Epub 2013 Mar 28.
5
UCP2 regulates the glucagon response to fasting and starvation.
Diabetes. 2013 May;62(5):1623-33. doi: 10.2337/db12-0981. Epub 2013 Feb 22.
7
Glucose decouples intracellular Ca2+ activity from glucagon secretion in mouse pancreatic islet alpha-cells.
PLoS One. 2012;7(10):e47084. doi: 10.1371/journal.pone.0047084. Epub 2012 Oct 15.
8
SSTR2 is the functionally dominant somatostatin receptor in human pancreatic β- and α-cells.
Am J Physiol Endocrinol Metab. 2012 Nov 1;303(9):E1107-16. doi: 10.1152/ajpendo.00207.2012. Epub 2012 Aug 28.
9
Fiji: an open-source platform for biological-image analysis.
Nat Methods. 2012 Jun 28;9(7):676-82. doi: 10.1038/nmeth.2019.
10
Predominant role of active versus facilitative glucose transport for glucagon-like peptide-1 secretion.
Diabetologia. 2012 Sep;55(9):2445-55. doi: 10.1007/s00125-012-2585-2. Epub 2012 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验