Suppr超能文献

利用相关理想指数(IIC)提高农药水溶性模型的预测能力。

The using of the Index of Ideality of Correlation (IIC) to improve predictive potential of models of water solubility for pesticides.

机构信息

Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.

Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD, Utrecht, The Netherlands.

出版信息

Environ Sci Pollut Res Int. 2020 Apr;27(12):13339-13347. doi: 10.1007/s11356-020-07820-6. Epub 2020 Feb 4.

Abstract

Models for water solubility of pesticides suggested in this manuscript are important data from point of view of ecologic engineering. The Index of Ideality of Correlation (IIC) of groups of quantitative structure-property relationships (QSPRs) for water solubility of pesticides related to the calibration sets was used to identify good in silico models. This comparison confirmed the high IIC set provides better statistical quality of the model for the validation set. Though there are large databases on solubility, the reliable prediction of the endpoint for new substances which are potential pesticides is an important ecologic task. Unfortunately, predictive models for various endpoints suffer overtraining, and the IIC serves to avoid or at least reduce this. Thus, the approach suggested has both theoretical and economic effects for ecology.

摘要

本文提出的农药水溶性模型从生态工程的角度来看是重要的数据。定量结构-性质关系(QSPR)组的理想相关指数(IIC)用于识别良好的计算模型。这种比较证实了高 IIC 集为验证集提供了更好的模型统计质量。尽管有大量的溶解度数据库,但可靠地预测潜在农药的新物质的终点是一个重要的生态任务。不幸的是,各种终点的预测模型都存在过度训练的问题,而 IIC 可以避免或至少减少这种问题。因此,本文提出的方法对生态学具有理论和经济意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验