Suppr超能文献

全脑皮层活动可预测抓握时手部的形状。

Global cortical activity predicts shape of hand during grasping.

作者信息

Agashe Harshavardhan A, Paek Andrew Y, Zhang Yuhang, Contreras-Vidal José L

机构信息

Noninvasive Brain-Machine Interface Systems Lab, Electrical and Computer Engineering, University of Houston Houston, TX, USA.

Noninvasive Brain-Machine Interface Systems Lab, Electrical and Computer Engineering, University of Houston Houston, TX, USA ; Hyperspectral Image Analysis Lab, Department of Electrical and Computer Engineering, University of Houston Houston, TX, USA.

出版信息

Front Neurosci. 2015 Apr 9;9:121. doi: 10.3389/fnins.2015.00121. eCollection 2015.

Abstract

Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low frequency modulations persist and contain enough information to decode grasp kinematics in macro-scale activity measured at the scalp via electroencephalography (EEG). Further, it is unclear as to whether joint angle velocities or movement synergies are the optimal kinematics spaces to decode. In this offline decoding study, we infer from human EEG, hand joint angular velocities as well as synergistic trajectories as subjects perform natural reach-to-grasp movements. Decoding accuracy, measured as the correlation coefficient (r) between the predicted and actual movement kinematics, was r = 0.49 ± 0.02 across 15 hand joints. Across the first three kinematic synergies, decoding accuracies were r = 0.59 ± 0.04, 0.47 ± 0.06, and 0.32 ± 0.05. The spatial-temporal pattern of EEG channel recruitment showed early involvement of contralateral frontal-central scalp areas followed by later activation of central electrodes over primary sensorimotor cortical areas. Information content in EEG about the grasp type peaked at 250 ms after movement onset. The high decoding accuracies in this study are significant not only as evidence for time-domain modulation in macro-scale brain activity, but for the field of brain-machine interfaces as well. Our decoding strategy, which harnesses the neural "symphony" as opposed to local members of the neural ensemble (as in intracranial approaches), may provide a means of extracting information about motor intent for grasping without the need for penetrating electrodes and suggests that it may be soon possible to develop non-invasive neural interfaces for the control of prosthetic limbs.

摘要

最近的研究表明,皮质场电位的幅度在时域中会受到抓握运动学的调制。然而,尚不清楚这些低频调制是否持续存在,以及是否包含足够的信息来通过脑电图(EEG)在头皮测量的宏观尺度活动中解码抓握运动学。此外,尚不清楚关节角速度或运动协同效应是否是用于解码的最佳运动学空间。在这项离线解码研究中,我们在受试者进行自然伸手抓握运动时,从人类脑电图、手部关节角速度以及协同轨迹中进行推断。以预测运动学与实际运动学之间的相关系数(r)衡量的解码准确率,在15个手部关节上为r = 0.49±0.02。在前三个运动协同效应中,解码准确率分别为r = 0.59±0.04、0.47±0.06和0.32±0.05。脑电图通道募集的时空模式显示,对侧额中央头皮区域早期参与,随后初级感觉运动皮层区域的中央电极被激活。脑电图中关于抓握类型的信息含量在运动开始后250毫秒达到峰值。本研究中的高解码准确率不仅作为宏观尺度大脑活动中时域调制的证据具有重要意义,对于脑机接口领域也是如此。我们的解码策略利用神经“交响乐”,而不是神经集合的局部成员(如颅内方法那样),可能提供一种无需穿透电极就能提取关于抓握运动意图信息的方法,并表明可能很快就能开发出用于控制假肢的非侵入性神经接口。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af15/4391035/44bbc3e67d40/fnins-09-00121-g0001.jpg

相似文献

1
Global cortical activity predicts shape of hand during grasping.
Front Neurosci. 2015 Apr 9;9:121. doi: 10.3389/fnins.2015.00121. eCollection 2015.
2
Reconstructing hand kinematics during reach to grasp movements from electroencephalographic signals.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5444-7. doi: 10.1109/IEMBS.2011.6091389.
4
5
Decoding repetitive finger movements with brain activity acquired via non-invasive electroencephalography.
Front Neuroeng. 2014 Mar 13;7:3. doi: 10.3389/fneng.2014.00003. eCollection 2014.
6
Continuous decoding of human grasp kinematics using epidural and subdural signals.
J Neural Eng. 2017 Feb;14(1):016005. doi: 10.1088/1741-2560/14/1/016005. Epub 2016 Nov 30.
7
Decoding Different Reach-and-Grasp Movements Using Noninvasive Electroencephalogram.
Front Neurosci. 2021 Sep 28;15:684547. doi: 10.3389/fnins.2021.684547. eCollection 2021.
8
Decoding natural grasp types from human ECoG.
Neuroimage. 2012 Jan 2;59(1):248-60. doi: 10.1016/j.neuroimage.2011.06.084. Epub 2011 Jul 8.
9
EEG Cortical Source Feature based Hand Kinematics Decoding using Residual CNN-LSTM Neural Network.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10341052.
10
Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees.
Prog Brain Res. 2016;228:107-28. doi: 10.1016/bs.pbr.2016.04.016. Epub 2016 Jun 10.

引用本文的文献

1
Disentangling human grasping type from the object's intrinsic properties using low-frequency EEG signals.
Neuroimage Rep. 2021 Jun 1;1(2):100012. doi: 10.1016/j.ynirp.2021.100012. eCollection 2021 Jun.
2
Decoding the brain-machine interaction for upper limb assistive technologies: advances and challenges.
Front Hum Neurosci. 2025 Feb 6;19:1532783. doi: 10.3389/fnhum.2025.1532783. eCollection 2025.
3
Emerging Medical Technologies and Their Use in Bionic Repair and Human Augmentation.
Bioengineering (Basel). 2024 Jul 9;11(7):695. doi: 10.3390/bioengineering11070695.
4
Decoding reach-to-grasp from EEG using classifiers trained with data from the contralateral limb.
Front Hum Neurosci. 2023 Nov 8;17:1302647. doi: 10.3389/fnhum.2023.1302647. eCollection 2023.
5
Reconstructing Synergy-Based Hand Grasp Kinematics from Electroencephalographic Signals.
Sensors (Basel). 2022 Jul 18;22(14):5349. doi: 10.3390/s22145349.
6
Exploring EEG spectral and temporal dynamics underlying a hand grasp movement.
PLoS One. 2022 Jun 23;17(6):e0270366. doi: 10.1371/journal.pone.0270366. eCollection 2022.
7
Compartmentalized dynamics within a common multi-area mesoscale manifold represent a repertoire of human hand movements.
Neuron. 2022 Jan 5;110(1):154-174.e12. doi: 10.1016/j.neuron.2021.10.002. Epub 2021 Oct 21.
8
Decoding Different Reach-and-Grasp Movements Using Noninvasive Electroencephalogram.
Front Neurosci. 2021 Sep 28;15:684547. doi: 10.3389/fnins.2021.684547. eCollection 2021.
9
An Electro-Oculogram Based Vision System for Grasp Assistive Devices-A Proof of Concept Study.
Sensors (Basel). 2021 Jul 1;21(13):4515. doi: 10.3390/s21134515.
10
Analyzing and Decoding Natural Reach-and-Grasp Actions Using Gel, Water and Dry EEG Systems.
Front Neurosci. 2020 Aug 12;14:849. doi: 10.3389/fnins.2020.00849. eCollection 2020.

本文引用的文献

1
Ten-dimensional anthropomorphic arm control in a human brain-machine interface: difficulties, solutions, and limitations.
J Neural Eng. 2015 Feb;12(1):016011. doi: 10.1088/1741-2560/12/1/016011. Epub 2014 Dec 16.
2
A common structure underlies low-frequency cortical dynamics in movement, sleep, and sedation.
Neuron. 2014 Sep 3;83(5):1185-99. doi: 10.1016/j.neuron.2014.07.022. Epub 2014 Aug 14.
3
Dexterous control of a prosthetic hand using fine-wire intramuscular electrodes in targeted extrinsic muscles.
IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):828-36. doi: 10.1109/TNSRE.2014.2301234. Epub 2014 Jan 21.
4
Decoding repetitive finger movements with brain activity acquired via non-invasive electroencephalography.
Front Neuroeng. 2014 Mar 13;7:3. doi: 10.3389/fneng.2014.00003. eCollection 2014.
5
On the usage of linear regression models to reconstruct limb kinematics from low frequency EEG signals.
PLoS One. 2013 Apr 17;8(4):e61976. doi: 10.1371/journal.pone.0061976. Print 2013.
6
Single trial analysis of slow cortical potentials: a study on anticipation related potentials.
J Neural Eng. 2013 Jun;10(3):036014. doi: 10.1088/1741-2560/10/3/036014. Epub 2013 Apr 23.
7
High-performance neuroprosthetic control by an individual with tetraplegia.
Lancet. 2013 Feb 16;381(9866):557-64. doi: 10.1016/S0140-6736(12)61816-9. Epub 2012 Dec 17.
8
Reach and grasp by people with tetraplegia using a neurally controlled robotic arm.
Nature. 2012 May 16;485(7398):372-5. doi: 10.1038/nature11076.
9
Reconstructing hand kinematics during reach to grasp movements from electroencephalographic signals.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5444-7. doi: 10.1109/IEMBS.2011.6091389.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验