Suppr超能文献

使用凝胶、水和干式脑电图系统分析与解码自然伸手抓握动作。

Analyzing and Decoding Natural Reach-and-Grasp Actions Using Gel, Water and Dry EEG Systems.

作者信息

Schwarz Andreas, Escolano Carlos, Montesano Luis, Müller-Putz Gernot R

机构信息

Institute of Neural Engineering, Graz University of Technology, Graz, Austria.

Bitbrain, Zaragoza, Spain.

出版信息

Front Neurosci. 2020 Aug 12;14:849. doi: 10.3389/fnins.2020.00849. eCollection 2020.

Abstract

Reaching and grasping is an essential part of everybody's life, it allows meaningful interaction with the environment and is key to independent lifestyle. Recent electroencephalogram (EEG)-based studies have already shown that neural correlates of natural reach-and-grasp actions can be identified in the EEG. However, it is still in question whether these results obtained in a laboratory environment can make the transition to mobile applicable EEG systems for home use. In the current study, we investigated whether EEG-based correlates of natural reach-and-grasp actions can be successfully identified and decoded using mobile EEG systems, namely the water-based EEG-Versatile system and the dry-electrodes EEG-Hero headset. In addition, we also analyzed gel-based recordings obtained in a laboratory environment (g.USBamp/g.Ladybird, gold standard), which followed the same experimental parameters. For each recording system, 15 study participants performed 80 self-initiated reach-and-grasp actions toward a glass (palmar grasp) and a spoon (lateral grasp). Our results confirmed that EEG-based correlates of reach-and-grasp actions can be successfully identified using these mobile systems. In a single-trial multiclass-based decoding approach, which incorporated both movement conditions and rest, we could show that the low frequency time domain (LFTD) correlates were also decodable. Grand average peak accuracy calculated on unseen test data yielded for the water-based electrode system 62.3% (9.2% STD), whereas for the dry-electrodes headset reached 56.4% (8% STD). For the gel-based electrode system 61.3% (8.6% STD) could be achieved. To foster and promote further investigations in the field of EEG-based movement decoding, as well as to allow the interested community to make their own conclusions, we provide all datasets publicly available in the BNCI Horizon 2020 database (http://bnci-horizon-2020.eu/database/data-sets).

摘要

伸手抓取是每个人生活中必不可少的一部分,它使人们能够与环境进行有意义的互动,并且是独立生活方式的关键。最近基于脑电图(EEG)的研究已经表明,在脑电图中可以识别出自然伸手抓取动作的神经关联。然而,在实验室环境中获得的这些结果能否应用于家用的便携式脑电图系统仍存在疑问。在当前的研究中,我们调查了使用便携式脑电图系统,即水基脑电图多功能系统和干电极脑电图英雄耳机,是否能够成功识别和解码基于脑电图的自然伸手抓取动作的关联。此外,我们还分析了在实验室环境中按照相同实验参数获得的基于凝胶的记录(g.USBamp/g.Ladybird,黄金标准)。对于每个记录系统,15名研究参与者对一个玻璃杯(掌侧抓握)和一把勺子(侧方抓握)进行了80次自发的伸手抓取动作。我们的结果证实,使用这些便携式系统可以成功识别基于脑电图的伸手抓取动作的关联。在一种结合了运动条件和休息状态的单试验多类别解码方法中,我们可以表明低频时域(LFTD)关联也是可解码的。根据未见测试数据计算得出的总体平均峰值准确率,水基电极系统为62.3%(标准差9.2%),而干电极耳机达到56.4%(标准差8%)。对于基于凝胶的电极系统,可以达到61.3%(标准差8.6%)。为了促进脑电图运动解码领域的进一步研究,并让感兴趣的群体能够得出自己的结论,我们将所有数据集公开提供在BNCI 2020地平线数据库(http://bnci-horizon-2020.eu/database/data-sets)中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be2a/7438923/dc062c88a42f/fnins-14-00849-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验