Suppr超能文献

基于低频 EEG 信号的线性回归模型在肢体运动重建中的应用。

On the usage of linear regression models to reconstruct limb kinematics from low frequency EEG signals.

机构信息

Aragon Institute of Engineering Research, I3A, University of Zaragoza, Zaragoza, Aragon, Spain.

出版信息

PLoS One. 2013 Apr 17;8(4):e61976. doi: 10.1371/journal.pone.0061976. Print 2013.

Abstract

Several works have reported on the reconstruction of 2D/3D limb kinematics from low-frequency EEG signals using linear regression models based on positive correlation values between the recorded and the reconstructed trajectories. This paper describes the mathematical properties of the linear model and the correlation evaluation metric that may lead to a misinterpretation of the results of this type of decoders. Firstly, the use of a linear regression model to adjust the two temporal signals (EEG and velocity profiles) implies that the relevant component of the signal used for decoding (EEG) has to be in the same frequency range as the signal to be decoded (velocity profiles). Secondly, the use of a correlation to evaluate the fitting of two trajectories could lead to overly-optimistic results as this metric is invariant to scale. Also, the correlation has a non-linear nature that leads to higher values for sinus/cosinus-like signals at low frequencies. Analysis of these properties on the reconstruction results was carried out through an experiment performed in line with previous studies, where healthy participants executed predefined reaching movements of the hand in 3D space. While the correlations of limb velocity profiles reconstructed from low-frequency EEG were comparable to studies in this domain, a systematic statistical analysis revealed that these results were not above the chance level. The empirical chance level was estimated using random assignments of recorded velocity profiles and EEG signals, as well as combinations of randomly generated synthetic EEG with recorded velocity profiles and recorded EEG with randomly generated synthetic velocity profiles. The analysis shows that the positive correlation results in this experiment cannot be used as an indicator of successful trajectory reconstruction based on a neural correlate. Several directions are herein discussed to address the misinterpretation of results as well as the implications on previous invasive and non-invasive works.

摘要

已有多项研究报告称,可通过基于记录轨迹与重建轨迹之间正相关值的线性回归模型,从低频 EEG 信号重建 2D/3D 肢体运动学。本文描述了线性模型的数学性质和相关评估指标,这些性质和指标可能会导致对这种解码器的结果产生错误的解释。首先,使用线性回归模型来调整两个时间信号(EEG 和速度曲线)意味着用于解码的相关信号(EEG)必须处于与要解码的信号(速度曲线)相同的频率范围内。其次,使用相关来评估两个轨迹的拟合度可能会导致过于乐观的结果,因为该指标对尺度不变。此外,相关性具有非线性性质,这会导致低频下正弦/余弦样信号的相关性值更高。通过与先前研究一致的实验对重建结果进行这些性质的分析,健康参与者在 3D 空间中执行了手部的预定义运动。虽然从低频 EEG 重建的肢体速度曲线的相关性与该领域的研究相当,但系统的统计分析表明,这些结果并不高于偶然水平。通过对记录的速度曲线和 EEG 信号进行随机分配,以及对记录的速度曲线和记录的 EEG 与随机生成的合成 EEG 进行组合,估计了经验偶然水平。分析表明,该实验中的正相关结果不能作为基于神经相关性成功重建轨迹的指标。本文还讨论了一些方向,以解决对结果的错误解释以及对先前的侵入性和非侵入性工作的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e312/3629197/53ad6bfce80f/pone.0061976.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验