Ding Yuan-Li, Wen Yuren, Chen Chia-Chin, van Aken Peter A, Maier Joachim, Yu Yan
‡Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany.
§Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany.
ACS Appl Mater Interfaces. 2015 May 20;7(19):10518-24. doi: 10.1021/acsami.5b01992. Epub 2015 May 6.
Nanosheets of earth-abundant jarosite were fabricated via a facile template-engaged redox coprecipitation strategy at room temperature and employed as novel anode materials for lithium-ion batteries (LIBs) for the first time. These 2D materials exhibit high capacities, excellent rate capability, and prolonged cycling performance. As for KFe3(SO4)2(OH)6 jarosite nanosheets (KNSs), the reversible capacities of above 1300 mAh g(-1) at 100 mA g(-1) and 620 mAh g(-1) after 4000 cycles at a very high current density of 10 A g(-1) were achieved, respectively. Moreover, the resulting 2D nanomaterials retain good structural integrity upon cycling. These results reveal great potential of jarosite nanosheets as low-cost and high-performance anode materials for next-generation LIBs.
通过一种简便的模板参与氧化还原共沉淀策略在室温下制备了富含地球元素的黄钾铁矾纳米片,并首次将其用作锂离子电池(LIBs)的新型负极材料。这些二维材料表现出高容量、优异的倍率性能和长循环性能。对于KFe3(SO4)2(OH)6黄钾铁矾纳米片(KNSs),分别在100 mA g(-1)时实现了高于1300 mAh g(-1)的可逆容量,以及在10 A g(-1)的非常高电流密度下循环4000次后达到620 mAh g(-1)。此外,所得二维纳米材料在循环过程中保持良好的结构完整性。这些结果揭示了黄钾铁矾纳米片作为下一代LIBs低成本、高性能负极材料的巨大潜力。