Suppr超能文献

利用智能手机音频特征进行跌倒检测。

Fall Detection Using Smartphone Audio Features.

作者信息

Cheffena Michael

出版信息

IEEE J Biomed Health Inform. 2016 Jul;20(4):1073-80. doi: 10.1109/JBHI.2015.2425932. Epub 2015 Apr 23.

Abstract

An automated fall detection system based on smartphone audio features is developed. The spectrogram, mel frequency cepstral coefficents (MFCCs), linear predictive coding (LPC), and matching pursuit (MP) features of different fall and no-fall sound events are extracted from experimental data. Based on the extracted audio features, four different machine learning classifiers: k-nearest neighbor classifier (k-NN), support vector machine (SVM), least squares method (LSM), and artificial neural network (ANN) are investigated for distinguishing between fall and no-fall events. For each audio feature, the performance of each classifier in terms of sensitivity, specificity, accuracy, and computational complexity is evaluated. The best performance is achieved using spectrogram features with ANN classifier with sensitivity, specificity, and accuracy all above 98%. The classifier also has acceptable computational requirement for training and testing. The system is applicable in home environments where the phone is placed in the vicinity of the user.

摘要

开发了一种基于智能手机音频特征的自动跌倒检测系统。从实验数据中提取了不同跌倒和未跌倒声音事件的频谱图、梅尔频率倒谱系数(MFCC)、线性预测编码(LPC)和匹配追踪(MP)特征。基于提取的音频特征,研究了四种不同的机器学习分类器:k近邻分类器(k-NN)、支持向量机(SVM)、最小二乘法(LSM)和人工神经网络(ANN),用于区分跌倒和未跌倒事件。对于每个音频特征,评估了每个分类器在灵敏度、特异性、准确性和计算复杂度方面的性能。使用频谱图特征和ANN分类器实现了最佳性能,灵敏度、特异性和准确性均高于98%。该分类器在训练和测试方面也具有可接受的计算要求。该系统适用于将手机放置在用户附近的家庭环境中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验