Suppr超能文献

无监督机器学习方法提高动态跌倒检测系统的性能。

Unsupervised machine-learning method for improving the performance of ambulatory fall-detection systems.

机构信息

Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia.

出版信息

Biomed Eng Online. 2012 Feb 16;11:9. doi: 10.1186/1475-925X-11-9.

Abstract

BACKGROUND

Falls can cause trauma, disability and death among older people. Ambulatory accelerometer devices are currently capable of detecting falls in a controlled environment. However, research suggests that most current approaches can tend to have insufficient sensitivity and specificity in non-laboratory environments, in part because impacts can be experienced as part of ordinary daily living activities.

METHOD

We used a waist-worn wireless tri-axial accelerometer combined with digital signal processing, clustering and neural network classifiers. The method includes the application of Discrete Wavelet Transform, Regrouping Particle Swarm Optimization, Gaussian Distribution of Clustered Knowledge and an ensemble of classifiers including a multilayer perceptron and Augmented Radial Basis Function (ARBF) neural networks.

RESULTS

Preliminary testing with 8 healthy individuals in a home environment yields 98.6% sensitivity to falls and 99.6% specificity for routine Activities of Daily Living (ADL) data. Single ARB and MLP classifiers were compared with a combined classifier. The combined classifier offers the greatest sensitivity, with a slight reduction in specificity for routine ADL and an increased specificity for exercise activities. In preliminary tests, the approach achieves 100% sensitivity on in-group falls, 97.65% on out-group falls, 99.33% specificity on routine ADL, and 96.59% specificity on exercise ADL.

CONCLUSION

The pre-processing and feature-extraction steps appear to simplify the signal while successfully extracting the essential features that are required to characterize a fall. The results suggest this combination of classifiers can perform better than MLP alone. Preliminary testing suggests these methods may be useful for researchers who are attempting to improve the performance of ambulatory fall-detection systems.

摘要

背景

老年人跌倒可导致创伤、残疾和死亡。可移动加速度计设备目前能够在受控环境中检测跌倒。然而,研究表明,目前大多数方法在非实验室环境中往往灵敏度和特异性不足,部分原因是冲击可能被视为日常生活活动的一部分。

方法

我们使用了一种佩戴在腰部的无线三轴加速度计,结合数字信号处理、聚类和神经网络分类器。该方法包括离散小波变换、重组粒子群优化、聚类知识的高斯分布以及包括多层感知器和增强径向基函数 (ARBF) 神经网络在内的分类器集合的应用。

结果

在家庭环境中对 8 名健康个体进行初步测试,得出对跌倒的灵敏度为 98.6%,对日常活动的特异性为 99.6%。单独的 ARB 和 MLP 分类器与组合分类器进行了比较。组合分类器提供了最大的灵敏度,对日常 ADL 的特异性略有降低,对运动活动的特异性略有增加。在初步测试中,该方法对同组跌倒的灵敏度为 100%,对异组跌倒的灵敏度为 97.65%,对日常 ADL 的特异性为 99.33%,对运动 ADL 的特异性为 96.59%。

结论

预处理和特征提取步骤似乎简化了信号,同时成功提取了用于表征跌倒所需的基本特征。结果表明,这种分类器组合可以比 MLP 单独表现更好。初步测试表明,这些方法可能对试图提高可移动跌倒检测系统性能的研究人员有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5519/3395835/25102159cdb8/1475-925X-11-9-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验