Song Zehua, Clain Jérôme, Iorga Bogdan I, Yi Zhou, Fisher Nicholas, Meunier Brigitte
Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France.
UMR 216, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France UMR 216, Institut de Recherche pour le Développement, Paris, France.
Antimicrob Agents Chemother. 2015 Jul;59(7):4053-8. doi: 10.1128/AAC.00710-15. Epub 2015 Apr 27.
The bc1 complex is central to mitochondrial bioenergetics and the target of the antimalarial drug atovaquone that binds in the quinol oxidation (Qo) site of the complex. Structural analysis has shown that the Qo site residue Y279 (Y268 in Plasmodium falciparum) is key for atovaquone binding. Consequently, atovaquone resistance can be acquired by mutation of that residue. In addition to the probability of amino acid substitution, the level of atovaquone resistance and the loss of bc1 complex activity that are associated with the novel amino acid would restrict the nature of resistance-driven mutations occurring on atovaquone exposure in native parasite populations. Using the yeast model, we characterized the effect of all the amino acid replacements resulting from a single nucleotide substitution at codon 279: Y279C, Y279D, Y279F, Y279H, Y279N, and Y279S (Y279C, D, F, H, N, and S). Two residue changes that required a double nucleotide substitution, Y279A and W, were added to the series. We found that mutations Y279A, C, and S conferred high atovaquone resistance but decreased the catalytic activity. Y279F had wild-type enzymatic activity and sensitivity to atovaquone, while the other substitutions caused a dramatic respiratory defect. The results obtained with the yeast model were examined in regard to atomic structure and compared to the reported data on the evolution of acquired atovaquone resistance in P. falciparum.
bc1复合物对于线粒体生物能量学至关重要,也是抗疟药物阿托伐醌的作用靶点,该药物结合在复合物的喹啉氧化(Qo)位点。结构分析表明,Qo位点的残基Y279(恶性疟原虫中的Y268)是阿托伐醌结合的关键。因此,该残基的突变可导致对阿托伐醌产生抗性。除了氨基酸替换的可能性外,与新氨基酸相关的阿托伐醌抗性水平和bc1复合物活性的丧失会限制天然寄生虫群体在接触阿托伐醌时产生抗性驱动突变的性质。我们使用酵母模型,表征了密码子279处单核苷酸替换导致的所有氨基酸替换的影响:Y279C、Y279D、Y279F、Y279H、Y279N和Y279S(Y279C、D、F、H、N和S)。该系列中增加了需要双核苷酸替换的两个残基变化Y279A和W。我们发现,Y279A、C和S突变赋予了对阿托伐醌的高抗性,但降低了催化活性。Y279F具有野生型酶活性和对阿托伐醌的敏感性,而其他替换导致了严重的呼吸缺陷。根据原子结构对酵母模型获得的结果进行了研究,并与报道的恶性疟原虫获得性阿托伐醌抗性进化数据进行了比较。