Suppr超能文献

术语映射中的众包学习:LOINC 经验

Learning From the Crowd in Terminology Mapping: The LOINC Experience.

作者信息

Dixon Brian E, Hook John, Vreeman Daniel J

机构信息

Richard M. Fairbanks School of Public Health at Indiana University-Purdue University Indianapolis, Regenstrief Institute, Inc., and Center for Health Information and Communication, Department of Veterans Affairs, Veterans Health Administration, Health Services Research and Development Service, Indianapolis, IN

Regenstrief Institute, Inc., Indianapolis, IN.

出版信息

Lab Med. 2015 Spring;46(2):168-74. doi: 10.1309/LMWJ730SVKTUBAOJ.

Abstract

National policies in the United States require the use of standard terminology for data exchange between clinical information systems. However, most electronic health record systems continue to use local and idiosyncratic ways of representing clinical observations. To improve mappings between local terms and standard vocabularies, we sought to make existing mappings (wisdom) from healt care organizations (the Crowd) available to individuals engaged in mapping processes. We developed new functionality to display counts of local terms and organizations that had previously mapped to a given Logical Observation Identifiers Names and Codes (LOINC) code. Further, we enabled users to view the details of those mappings, including local term names and the organizations that create the mappings. Users also would have the capacity to contribute their local mappings to a shared mapping repository. In this article, we describe the new functionality and its availability to implementers who desire resources to make mapping more efficient and effective.

摘要

美国的国家政策要求临床信息系统之间的数据交换使用标准术语。然而,大多数电子健康记录系统仍在继续使用表示临床观察结果的本地和特殊方式。为了改进本地术语与标准词汇之间的映射,我们试图让从事映射过程的个人能够获取医疗保健组织(群体)现有的映射(智慧)。我们开发了新功能,以显示先前已映射到给定逻辑观察标识符名称和代码(LOINC)代码的本地术语和组织的计数。此外,我们还使用户能够查看这些映射的详细信息,包括本地术语名称和创建映射的组织。用户还将有能力将其本地映射贡献到共享映射存储库中。在本文中,我们描述了新功能及其对希望获得资源以提高映射效率和效果的实施者的可用性。

相似文献

2
Learning from the crowd while mapping to LOINC.在映射到LOINC的同时从群体中学习。
J Am Med Inform Assoc. 2015 Nov;22(6):1205-11. doi: 10.1093/jamia/ocv098. Epub 2015 Jul 29.
9
Logical Observation Identifiers Names and Codes for Laboratorians.逻辑观察标识符命名与检验规范
Arch Pathol Lab Med. 2020 Feb;144(2):229-239. doi: 10.5858/arpa.2018-0477-RA. Epub 2019 Jun 20.

引用本文的文献

4
Interactive Machine Learning for Laboratory Data Integration.用于实验室数据整合的交互式机器学习
Stud Health Technol Inform. 2019 Aug 21;264:133-137. doi: 10.3233/SHTI190198.
6
Learning from the crowd while mapping to LOINC.在映射到LOINC的同时从群体中学习。
J Am Med Inform Assoc. 2015 Nov;22(6):1205-11. doi: 10.1093/jamia/ocv098. Epub 2015 Jul 29.

本文引用的文献

7
Approaching semantic interoperability in Health Level Seven.在健康信息交换标准第七版中实现语义互操作性。
J Am Med Inform Assoc. 2011 Jan-Feb;18(1):99-103. doi: 10.1136/jamia.2010.007864. Epub 2010 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验