Suppr超能文献

使用 RELMA V.5 将德国大学附属医院的本地实验室接口术语映射到 LOINC:一种半自动方法。

Mapping local laboratory interface terms to LOINC at a German university hospital using RELMA V.5: a semi-automated approach.

机构信息

Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

出版信息

J Am Med Inform Assoc. 2013 Mar-Apr;20(2):293-7. doi: 10.1136/amiajnl-2012-001063. Epub 2012 Jul 16.

Abstract

OBJECTIVE

Logical Observation Identifiers Names and Codes (LOINC) mapping of laboratory data is often a question of the effort of mapping compared with the benefits of the structure achieved. The new LOINC mapping assistant RELMA (version 2011) has the potential to reduce the effort required for semi-automated mapping. We examined quality, time effort, and sustainability of such mapping.

METHODS

To verify the mapping quality, two samples of 100 laboratory terms were extracted from the laboratory system of a German university hospital and processed in a semi-automated fashion with RELMA V.5 and LOINC V.2.34 German translation DIMDI to obtain LOINC codes. These codes were reviewed by two experts from each of two laboratories. Then all 2148 terms used in these two laboratories were processed in the same way.

RESULTS

In the initial samples, 93 terms from one laboratory system and 92 terms from the other were correctly mapped. Of the total 2148 terms, 1660 could be mapped. An average of 500 terms per day or 60 terms per hour could be mapped. Of the laboratory terms used in 2010, 99% could be mapped.

DISCUSSION

Semi-automated LOINC mapping of non-English laboratory terms has become promising in terms of effort and mapping quality using the new version RELMA V.5. The effort is probably lower than for previous manual mapping. The mapping quality equals that of manual mapping and is far better than that reported with previous automated mapping activities.

CONCLUSION

RELMA V.5 and LOINC V.2.34 offer the opportunity to start thinking again about LOINC mapping even in non-English languages, since mapping effort is acceptable and mapping results equal those of previous manual mapping reports.

摘要

目的

实验室数据的逻辑观察标识符名称和代码(LOINC)映射通常是映射工作与所获得结构收益之间的权衡问题。新的 LOINC 映射助手 RELMA(版本 2011)具有减少半自动映射所需工作量的潜力。我们研究了这种映射的质量、时间投入和可持续性。

方法

为了验证映射质量,从一家德国大学医院的实验室系统中提取了两个包含 100 个实验室术语的样本,并使用 RELMA V.5 和 LOINC V.2.34 德国 DIMDI 翻译以半自动方式处理,以获得 LOINC 代码。这些代码由来自两个实验室的两位专家分别进行了审查。然后,以相同的方式处理这两个实验室使用的所有 2148 个术语。

结果

在初始样本中,一个实验室系统中的 93 个术语和另一个实验室系统中的 92 个术语得到了正确映射。在总共 2148 个术语中,有 1660 个可以映射。每天可以映射平均 500 个术语或每小时 60 个术语。在 2010 年使用的实验室术语中,99%可以映射。

讨论

使用新版本 RELMA V.5,非英语实验室术语的半自动 LOINC 映射在工作量和映射质量方面都具有很大的潜力。工作量可能低于以前的手动映射。映射质量与手动映射相当,并且远远优于以前的自动化映射活动报告的质量。

结论

RELMA V.5 和 LOINC V.2.34 提供了一个机会,即使在非英语语言环境下,也可以重新考虑 LOINC 映射,因为映射工作是可以接受的,映射结果与以前的手动映射报告相当。

相似文献

3
Learning from the crowd while mapping to LOINC.在映射到LOINC的同时从群体中学习。
J Am Med Inform Assoc. 2015 Nov;22(6):1205-11. doi: 10.1093/jamia/ocv098. Epub 2015 Jul 29.
5
A multi-part matching strategy for mapping LOINC with laboratory terminologies.多部分匹配策略,用于将 LOINC 与实验室术语进行映射。
J Am Med Inform Assoc. 2014 Sep-Oct;21(5):792-800. doi: 10.1136/amiajnl-2013-002139. Epub 2013 Dec 20.
6
LOINC codes for hospital information systems documents: a case study.医院信息系统文档的LOINC编码:一项案例研究。
J Am Med Inform Assoc. 2009 May-Jun;16(3):400-3. doi: 10.1197/jamia.M2882. Epub 2009 Mar 4.
9
Logical Observation Identifiers Names and Codes for Laboratorians.逻辑观察标识符命名与检验规范
Arch Pathol Lab Med. 2020 Feb;144(2):229-239. doi: 10.5858/arpa.2018-0477-RA. Epub 2019 Jun 20.

引用本文的文献

7
Learning from the crowd while mapping to LOINC.在映射到LOINC的同时从群体中学习。
J Am Med Inform Assoc. 2015 Nov;22(6):1205-11. doi: 10.1093/jamia/ocv098. Epub 2015 Jul 29.

本文引用的文献

3
Enabling international adoption of LOINC through translation.通过翻译使 LOINC 能够在国际上被采用。
J Biomed Inform. 2012 Aug;45(4):667-73. doi: 10.1016/j.jbi.2012.01.005. Epub 2012 Jan 21.
5
Toward semantic interoperability of electronic health records.迈向电子健康记录的语义互操作性。
IEEE Trans Inf Technol Biomed. 2012 May;16(3):424-31. doi: 10.1109/TITB.2011.2180917. Epub 2011 Dec 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验