Department of Physics, Technical University of Denmark, Fysikvej, bygning 307, 2800 Kongens Lyngby, Denmark.
Scientific Instrument Femtosecond X-ray Experiments, European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany.
J Am Chem Soc. 2022 Jul 20;144(28):12861-12873. doi: 10.1021/jacs.2c04505. Epub 2022 Jul 1.
The ultrafast dynamical response of solute-solvent interactions plays a key role in transition metal complexes, where charge transfer states are ubiquitous. Nonetheless, there exist very few excited-state simulations of transition metal complexes in solution. Here, we carry out a nonadiabatic dynamics study of the iron complex [Fe(CN)(bpy)] (bpy = 2,2'-bipyridine) in explicit aqueous solution. Implicit solvation models were found inadequate for reproducing the strong solvatochromism in the absorption spectra. Instead, direct solute-solvent interactions, in the form of hydrogen bonds, are responsible for the large observed solvatochromic shift and the general dynamical behavior of the complex in water. The simulations reveal an overall intersystem crossing time scale of 0.21 ± 0.01 ps and a strong reliance of this process on nuclear motion. A charge transfer character analysis shows a branched decay mechanism from the initially excited singlet metal-to-ligand charge transfer (MLCT) states to triplet states of MLCT and metal-centered (MC) character. We also find that solvent reorganization after excitation is ultrafast, on the order of 50 fs around the cyanides and slower around the bpy ligand. In contrast, the nuclear vibrational dynamics, in the form of Fe-ligand bond changes, takes place on slightly longer time scales. We demonstrate that the surprisingly fast solvent reorganizing should be observable in time-resolved X-ray solution scattering experiments, as simulated signals show strong contributions from the solute-solvent scattering cross term. Altogether, the simulations paint a comprehensive picture of the coupled and concurrent electronic, nuclear, and solvent dynamics and interactions in the first hundreds of femtoseconds after excitation.
溶剂-溶质相互作用的超快动力学响应在过渡金属配合物中起着关键作用,其中电荷转移态普遍存在。尽管如此,在溶液中对过渡金属配合物进行激发态模拟的研究却很少。在这里,我们对铁配合物[Fe(CN)(bpy)](bpy=2,2'-联吡啶)在显含水溶液中的非绝热动力学进行了研究。我们发现,隐式溶剂化模型不足以重现吸收光谱中强烈的溶剂化变色现象。相反,氢键形式的直接溶剂-溶质相互作用是导致观察到的大溶剂化变色和配合物在水中的一般动力学行为的原因。模拟结果表明,总体上体系间交叉时间尺度为 0.21±0.01 ps,这一过程强烈依赖于核运动。电荷转移特性分析表明,从最初激发的单重态金属-配体电荷转移(MLCT)态到三重态 MLCT 和金属中心(MC)态存在分支衰减机制。我们还发现,激发后溶剂重排是超快的,氰化物周围约为 50 fs,bpy 配体周围较慢。相比之下,以 Fe-配体键变化形式的核振动动力学发生在稍长的时间尺度上。我们证明,在时间分辨的 X 射线溶液散射实验中应该可以观察到令人惊讶的快速溶剂重排,因为模拟信号显示出溶质-溶剂散射交叉项的强烈贡献。总之,模拟结果描绘了激发后最初数百飞秒内电子、核和溶剂动力学以及相互作用的综合图景。