Suppr超能文献

利用移动健康方法识别高风险非法药物使用模式。

Utilizing mHealth methods to identify patterns of high risk illicit drug use.

作者信息

Linas Beth S, Latkin Carl, Genz Andrew, Westergaard Ryan P, Chang Larry W, Bollinger Robert C, Kirk Gregory D

机构信息

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.

Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.

出版信息

Drug Alcohol Depend. 2015 Jun 1;151:250-7. doi: 10.1016/j.drugalcdep.2015.03.031. Epub 2015 Apr 5.

Abstract

INTRODUCTION

We assessed patterns of illicit drug use using mobile health (mHealth) methods and subsequent health care indicators among drug users in Baltimore, MD.

METHODS

Participants of the EXposure Assessment in Current Time (EXACT) study were provided a mobile device for assessment of their daily drug use (heroin, cocaine or both), mood and social context for 30 days from November 2008 through May 2013. Real-time, self-reported drug use events were summed for individuals by day. Drug use risk was assessed through growth mixture modeling. Latent class regression examined the association of mHealth-defined risk groups with indicators of healthcare access and utilization.

RESULTS

109 participants were a median of 48.5 years old, 90% African American, 52% male and 59% HIV-infected. Growth mixture modeling identified three distinct classes: low intensity drug use (25%), moderate intensity drug use (65%) and high intensity drug use (10%). Compared to low intensity drug users, high intensity users were younger, injected greater than once per day, and shared needles. At the subsequent study visit, high intensity drug users were nine times less likely to be medically insured (adjusted OR: 0.10, 95%CI: 0.01-0.88) and at greater risk for failing to attend any outpatient appointments (aOR: 0.13, 95%CI: 0.02-0.85) relative to low intensity drug users.

CONCLUSIONS

Real-time assessment of drug use and novel methods of describing sub-classes of drug users uncovered individuals with higher-risk behavior who were poorly utilizing healthcare services. mHealth holds promise for identifying individuals engaging in high-risk behaviors and delivering real-time interventions to improve care outcomes.

摘要

引言

我们使用移动健康(mHealth)方法评估了马里兰州巴尔的摩市吸毒者的非法药物使用模式以及随后的医疗保健指标。

方法

“当前暴露评估(EXACT)”研究的参与者在2008年11月至2013年5月的30天内获得了一部移动设备,用于评估他们每日的药物使用情况(海洛因、可卡因或两者皆有)、情绪和社会背景。按天汇总个人实时自我报告的药物使用事件。通过生长混合模型评估药物使用风险。潜在类别回归分析了mHealth定义的风险组与医疗保健获取和利用指标之间的关联。

结果

109名参与者的年龄中位数为48.5岁,90%为非裔美国人,52%为男性,59%感染了艾滋病毒。生长混合模型确定了三个不同的类别:低强度药物使用(25%)、中等强度药物使用(65%)和高强度药物使用(10%)。与低强度药物使用者相比,高强度使用者更年轻,每天注射超过一次,并且共用针头。在随后的研究随访中,相对于低强度药物使用者,高强度药物使用者获得医疗保险的可能性低九倍(调整后的比值比:0.10,95%置信区间:0.01 - 0.88),未能参加任何门诊预约的风险更高(调整后的比值比:0.13,95%置信区间:0.02 - 0.85)。

结论

对药物使用的实时评估以及描述吸毒者亚类别的新方法揭示了行为风险较高且医疗保健服务利用率较低的个体。移动健康有望识别出从事高风险行为的个体并提供实时干预措施以改善护理结果。

相似文献

1
Utilizing mHealth methods to identify patterns of high risk illicit drug use.利用移动健康方法识别高风险非法药物使用模式。
Drug Alcohol Depend. 2015 Jun 1;151:250-7. doi: 10.1016/j.drugalcdep.2015.03.031. Epub 2015 Apr 5.

引用本文的文献

7
A pilot study of a smartphone application supporting recovery from drug addiction.智能手机应用支持戒毒的初步研究。
J Subst Abuse Treat. 2018 May;88:51-58. doi: 10.1016/j.jsat.2018.02.006. Epub 2018 Feb 26.

本文引用的文献

10
Changes in blood-borne infection risk among injection drug users.注射吸毒者血液传播感染风险的变化。
J Infect Dis. 2011 Mar 1;203(5):587-94. doi: 10.1093/infdis/jiq112. Epub 2011 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验