Suppr超能文献

中耳腔和乳突气房的声学传输线模型。

Acoustical transmission-line model of the middle-ear cavities and mastoid air cells.

作者信息

Keefe Douglas H

机构信息

Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131.

出版信息

J Acoust Soc Am. 2015 Apr;137(4):1877-87. doi: 10.1121/1.4916200.

Abstract

An acoustical transmission line model of the middle-ear cavities and mastoid air cell system (MACS) was constructed for the adult human middle ear with normal function. The air-filled cavities comprised the tympanic cavity, aditus, antrum, and MACS. A binary symmetrical airway branching model of the MACS was constructed using an optimization procedure to match the average total volume and surface area of human temporal bones. The acoustical input impedance of the MACS was calculated using a recursive procedure, and used to predict the input impedance of the middle-ear cavities at the location of the tympanic membrane. The model also calculated the ratio of the acoustical pressure in the antrum to the pressure in the middle-ear cavities at the location of the tympanic membrane. The predicted responses were sensitive to the magnitude of the viscothermal losses within the MACS. These predicted input impedance and pressure ratio functions explained the presence of multiple resonances reported in published data, which were not explained by existing MACS models.

摘要

构建了具有正常功能的成人人中耳的中耳腔和乳突气房系统(MACS)的声学传输线模型。充满空气的腔包括鼓室、鼓窦入口、鼓窦和MACS。使用优化程序构建了MACS的二元对称气道分支模型,以匹配人类颞骨的平均总体积和表面积。使用递归程序计算MACS的声学输入阻抗,并用于预测鼓膜位置处中耳腔的输入阻抗。该模型还计算了鼓窦处的声压与鼓膜位置处中耳腔压力的比值。预测响应对MACS内的粘滞热损失大小敏感。这些预测的输入阻抗和压力比函数解释了已发表数据中报道的多个共振的存在,而现有MACS模型无法解释这些共振。

相似文献

1
Acoustical transmission-line model of the middle-ear cavities and mastoid air cells.
J Acoust Soc Am. 2015 Apr;137(4):1877-87. doi: 10.1121/1.4916200.
2
Human middle-ear model with compound eardrum and airway branching in mastoid air cells.
J Acoust Soc Am. 2015 May;137(5):2698-725. doi: 10.1121/1.4916592.
3
Acoustic mechanisms: canal wall-up versus canal wall-down mastoidectomy.
Otolaryngol Head Neck Surg. 1998 Jun;118(6):751-61. doi: 10.1016/S0194-5998(98)70264-5.
6
Acoustic responses of the human middle ear.
Hear Res. 2000 Dec;150(1-2):43-69. doi: 10.1016/s0378-5955(00)00177-5.
7
Mastoid and tympanic membrane as pressure buffers: a quantitative study in a middle ear cleft model.
Otol Neurotol. 2003 Nov;24(6):839-42. doi: 10.1097/00129492-200311000-00002.
8
The mastoid as a functional rate-limiter of middle ear pressure change.
Int J Pediatr Otorhinolaryngol. 2007 Mar;71(3):393-402. doi: 10.1016/j.ijporl.2006.11.004. Epub 2006 Dec 15.
9
Mastoid buffering properties: I. Gas partial pressures.
Ann Otol Rhinol Laryngol. 1999 Aug;108(8):750-5. doi: 10.1177/000348949910800807.
10
Acoustics of the human middle-ear air space.
J Acoust Soc Am. 2005 Aug;118(2):861-71. doi: 10.1121/1.1974730.

引用本文的文献

3
Oral seeding and niche-adaptation of middle ear biofilms in health.
Biofilm. 2021 Jan 6;3:100041. doi: 10.1016/j.bioflm.2020.100041. eCollection 2021 Dec.
4
Optical Identification of Middle Ear Infection.
Molecules. 2020 May 9;25(9):2239. doi: 10.3390/molecules25092239.
5
6
Non-invasive estimation of middle-ear input impedance and efficiency.
J Acoust Soc Am. 2015 Aug;138(2):977-93. doi: 10.1121/1.4927408.
7
Human middle-ear model with compound eardrum and airway branching in mastoid air cells.
J Acoust Soc Am. 2015 May;137(5):2698-725. doi: 10.1121/1.4916592.

本文引用的文献

1
Relationship between surface area and volume of the mastoid air cell system in adult humans.
J Laryngol Otol. 2011 Jun;125(6):580-4. doi: 10.1017/S0022215110002811. Epub 2011 Jan 5.
2
A morphogenetic model of cranial pneumatization based on the invasive tissue hypothesis.
Anat Rec (Hoboken). 2008 Nov;291(11):1446-54. doi: 10.1002/ar.20784.
3
The mastoid as a functional rate-limiter of middle ear pressure change.
Int J Pediatr Otorhinolaryngol. 2007 Mar;71(3):393-402. doi: 10.1016/j.ijporl.2006.11.004. Epub 2006 Dec 15.
4
The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume.
Proc Natl Acad Sci U S A. 1926 Mar;12(3):207-14. doi: 10.1073/pnas.12.3.207.
6
Acoustics of the human middle-ear air space.
J Acoust Soc Am. 2005 Aug;118(2):861-71. doi: 10.1121/1.1974730.
7
Acoustic-structural coupled finite element analysis for sound transmission in human ear--pressure distributions.
Med Eng Phys. 2006 Jun;28(5):395-404. doi: 10.1016/j.medengphy.2005.07.018. Epub 2005 Aug 24.
8
Mathematical analysis of atelectasis formation in middle ears with sealed ventilation tubes.
Acta Physiol Scand. 2003 Apr;177(4):493-505. doi: 10.1046/j.1365-201X.2003.01096.x.
9
Functions of the mastoid cell system: auto-regulation of temperature and gas pressure.
J Laryngol Otol. 2003 Feb;117(2):99-103. doi: 10.1258/002221503762624512.
10
Modeling of the human middle ear using the finite-element method.
J Acoust Soc Am. 2002 Mar;111(3):1306-17. doi: 10.1121/1.1451073.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验