†State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.
‡National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan.
Environ Sci Technol. 2015 May 19;49(10):5973-9. doi: 10.1021/es5062903. Epub 2015 May 8.
Insights from molecular-level mechanisms of arsenite [As(III)] and cadmium (Cd) co-adsorption on TiO2 can further our understanding of their synergistic removal in industrial wastewaters. The motivation for our study is to explore the interfacial interactions of neutrally charged As(III) and cationic Cd(2+) on nanocrystalline TiO2 using multiple complementary techniques. The results of adsorption edge, ζ potential, and surface complexation modeling suggest that coexistence of As(III) and Cd(2+) enhanced their synergistic adsorption on TiO2 and, consequently, resulted in the formation of a ternary surface complex. This ternary surface complex, in turn, inhibited the metal release into the aqueous phase and, therefore, facilitated the immobilization of the heavy metals. Our in situ flow-cell attentuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and extended X-ray absorption fine structure (EXAFS) spectroscopy evidence showed that, regardless of the order of contact, As(III) was preferentially adsorbed on TiO2 rather than Cd. In agreement with our spectroscopic analysis, quantum chemistry calculations also illustrated that the Cd-As(III)-TiO2 ternary surface complex should be formed with the adsorbed As(III) as the bridging molecule. At high As(III) concentrations, the formation of the Cd-As(III)-TiO2 complex is responsible for the Cd removal. The simultaneous removal mechanisms will further our understanding of the removal of multiple pollutants in industrial wastewaters.
砷(III)和镉(Cd)在 TiO2 上共吸附的分子水平机制的见解可以进一步加深我们对它们在工业废水中协同去除的理解。我们研究的动机是使用多种互补技术探索中性的 As(III)和阳离子 Cd(2+)在纳米晶 TiO2 上的界面相互作用。吸附边缘、ζ 电位和表面络合建模的结果表明,As(III)和 Cd(2+)的共存增强了它们在 TiO2 上的协同吸附,从而形成了三元表面络合物。反过来,这种三元表面络合物抑制了金属向水相的释放,因此有利于重金属的固定。我们的原位流动池衰减全反射傅里叶变换红外(ATR-FTIR)光谱和扩展 X 射线吸收精细结构(EXAFS)光谱证据表明,无论接触顺序如何,As(III)优先于 Cd 被吸附在 TiO2 上。与我们的光谱分析一致,量子化学计算也表明,Cd-As(III)-TiO2 三元表面络合物应通过吸附的 As(III)作为桥联分子形成。在高浓度的 As(III)下,Cd-As(III)-TiO2 配合物的形成负责去除 Cd。同时去除机制将进一步加深我们对工业废水中多种污染物去除的理解。