Suppr超能文献

在生产环境中辨别猪的叫声。

Discerning pig screams in production environments.

作者信息

Vandermeulen J, Bahr C, Tullo E, Fontana I, Ott S, Kashiha M, Guarino M, Moons C P H, Tuyttens F A M, Niewold T A, Berckmans D

机构信息

M3-BIORES-Measure, Model & Manage Bioresponses, KU Leuven, Leuven, Belgium.

Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy.

出版信息

PLoS One. 2015 Apr 29;10(4):e0123111. doi: 10.1371/journal.pone.0123111. eCollection 2015.

Abstract

Pig vocalisations convey information about their current state of health and welfare. Continuously monitoring these vocalisations can provide useful information for the farmer. For instance, pig screams can indicate stressful situations. When monitoring screams, other sounds can interfere with scream detection. Therefore, identifying screams from other sounds is essential. The objective of this study was to understand which sound features define a scream. Therefore, a method to detect screams based on sound features with physical meaning and explicit rules was developed. To achieve this, 7 hours of labelled data from 24 pigs was used. The developed detection method attained 72% sensitivity, 91% specificity and 83% precision. As a result, the detection method showed that screams contain the following features discerning them from other sounds: a formant structure, adequate power, high frequency content, sufficient variability and duration.

摘要

猪的叫声传达了它们当前的健康和福利状况信息。持续监测这些叫声可以为养殖户提供有用信息。例如,猪的尖叫声可能表明处于应激状态。在监测尖叫声时,其他声音会干扰尖叫声的检测。因此,从其他声音中识别出尖叫声至关重要。本研究的目的是了解哪些声音特征定义了一声尖叫。因此,开发了一种基于具有物理意义和明确规则的声音特征来检测尖叫声的方法。为实现这一目标,使用了来自24头猪的7小时标记数据。所开发的检测方法灵敏度达到72%,特异性达到91%,精确度达到83%。结果,该检测方法表明,尖叫声具有以下使其区别于其他声音的特征:共振峰结构、足够的功率、高频成分、足够的可变性和持续时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f7e/4414550/4b981adfbb1d/pone.0123111.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验