Suppr超能文献

轴突伸长与回缩的细胞力学

The cytomechanics of axonal elongation and retraction.

作者信息

Dennerll T J, Lamoureux P, Buxbaum R E, Heidemann S R

机构信息

Department of Physiology, Michigan State University, East Lansing 48824-1101.

出版信息

J Cell Biol. 1989 Dec;109(6 Pt 1):3073-83. doi: 10.1083/jcb.109.6.3073.

Abstract

Neurites of PC12 and chick dorsal root ganglion neurons behave as viscoelastic solids in response to applied forces. This passive behavior can be modeled with three mechanical elements; a relatively stiff, undamped spring in series with a Voight element composed of a less stiff spring in parallel with a dashpot. In response to applied tensions greater than 100 microdynes, PC12 cells show lengthening behavior distinct from and in addition to the passive viscoelastic response. We interpret this as "towed growth" (Bray, D. 1984. Dev. Biol. 102:379-389) because the neurites can become twice as long without obvious thinning of the neurite and because in two cases neurite tensions fell below original rest tensions, a result that cannot be obtained with passive viscoelastic elements. The rate of towed growth showed a linear dependence of growth rate with applied tensions in 8 of 12 PC12 neurites exposed to applied tension greater than 100 microdynes. Both PC12 and chick sensory neurons showed evidence of retraction when neurite tensions were suddenly diminished. This response was measured as tension recovery after slackening in chick sensory neurites. In 62% of the cases, tension recovery exceeded and sometimes doubled the preexperimental steady-state tension. Our data indicate that this response is active tension generation by the neurite shaft. We conclude that neurite length is regulated by axial tension in both elongation and retraction. Our data suggest a three-way controller: above some tension set point, the neurite is stimulated to elongate. Below some different, lower tension threshold the neurite is stimulated to retract. Between these two tension thresholds, the neurite responds passively as a viscoelastic solid.

摘要

PC12细胞和鸡背根神经节神经元的神经突在受到外力作用时表现为粘弹性固体。这种被动行为可以用三个力学元件来建模:一个相对较硬、无阻尼的弹簧与一个由较软弹簧和一个阻尼器并联组成的沃伊特元件串联。当受到大于100微达因的外加张力时,PC12细胞表现出不同于被动粘弹性反应且除此之外的伸长行为。我们将此解释为“牵引生长”(布雷,D. 1984. 《发育生物学》102:379 - 389),因为神经突可以变长两倍而神经突没有明显变细,并且在两个案例中神经突张力降至原始静息张力以下,这是被动粘弹性元件无法得到的结果。在12个受到大于100微达因外加张力的PC12神经突中,有8个神经突的牵引生长速率显示出生长速率与外加张力呈线性依赖关系。当神经突张力突然减小时,PC12细胞和鸡感觉神经元都显示出回缩的迹象。这种反应在鸡感觉神经突中通过松弛后的张力恢复来测量。在62%的案例中,张力恢复超过且有时是实验前稳态张力的两倍。我们的数据表明这种反应是神经突轴主动产生张力。我们得出结论,神经突长度在伸长和回缩过程中都由轴向张力调节。我们的数据表明存在一种三向控制器:在某个张力设定点以上,神经突被刺激伸长。在某个不同的、较低的张力阈值以下,神经突被刺激回缩。在这两个张力阈值之间,神经突作为粘弹性固体被动响应。

相似文献

1
The cytomechanics of axonal elongation and retraction.轴突伸长与回缩的细胞力学
J Cell Biol. 1989 Dec;109(6 Pt 1):3073-83. doi: 10.1083/jcb.109.6.3073.
4
Cytomechanics of neurite outgrowth from chick brain neurons.鸡脑神经元轴突生长的细胞力学
J Cell Sci. 1997 May;110 ( Pt 10):1179-86. doi: 10.1242/jcs.110.10.1179.
6
Cytomechanics of axonal development.轴突发育的细胞力学
Cell Biochem Biophys. 1995;27(3):135-55. doi: 10.1007/BF02738107.
7
Tensile regulation of axonal elongation and initiation.轴突伸长与起始的拉伸调节
J Neurosci. 1991 Apr;11(4):1117-25. doi: 10.1523/JNEUROSCI.11-04-01117.1991.
9
Mechanical properties of axons.轴突的力学特性。
Phys Rev Lett. 2007 Jul 6;99(1):018301. doi: 10.1103/PhysRevLett.99.018301. Epub 2007 Jul 3.

引用本文的文献

5
Can repetitive mechanical motion cause structural damage to axons?重复性机械运动是否会对轴突造成结构损伤?
Front Mol Neurosci. 2024 Jun 7;17:1371738. doi: 10.3389/fnmol.2024.1371738. eCollection 2024.
7
Physical Forces in Regeneration of Cells and Tissues.细胞与组织再生中的物理力
Cold Spring Harb Perspect Biol. 2025 Apr 1;17(4):a041527. doi: 10.1101/cshperspect.a041527.
8
Vesicle fusion and release in neurons under dynamic mechanical equilibrium.动态力学平衡下神经元中的囊泡融合与释放
iScience. 2024 Apr 19;27(5):109793. doi: 10.1016/j.isci.2024.109793. eCollection 2024 May 17.

本文引用的文献

2
7
Regressive events in neurogenesis.神经发生中的退行性事件。
Science. 1984 Sep 21;225(4668):1258-65. doi: 10.1126/science.6474175.
8
Cytoplasmic structure in rapid-frozen axons.快速冷冻轴突中的细胞质结构。
J Cell Biol. 1982 Sep;94(3):667-9. doi: 10.1083/jcb.94.3.667.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验