Baas P W, Black M M, Banker G A
Department of Anatomy, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.
J Cell Biol. 1989 Dec;109(6 Pt 1):3085-94. doi: 10.1083/jcb.109.6.3085.
Microtubules in the dendrites of cultured hippocampal neurons are of nonuniform polarity orientation. About half of the microtubules have their plus ends oriented distal to the cell body, and the other half have their minus ends distal; in contrast, microtubules in the axon are of uniform polarity orientation, all having their plus ends distal (Baas, P.W., J.S. Deitch, M. M. Black, and G. A. Banker. 1988. Proc. Natl. Acad. Sci. USA. 85:8335-8339). Here we describe the developmental changes that give rise to the distinct microtubule patterns of axons and dendrites. Cultured hippocampal neurons initially extend several short processes, any one of which can apparently become the axon (Dotti, C. G., and G. A. Banker. 1987. Nature [Lond.]. 330:477-479). A few days after the axon has begun its rapid growth, the remaining processes differentiate into dendrites (Dotti, C. G., C. A. Sullivan, and G. A. Banker. 1988. J. Neurosci. 8:1454-1468). The polarity orientation of the microtubules in all of the initial processes is uniform, with plus ends distal to the cell body, even through most of these processes will become dendrites. This uniform microtubule polarity orientation is maintained in the axon at all stages of its growth. The polarity orientation of the microtubules in the other processes remains uniform until they begin to grow and acquire the morphological characteristics of dendrites. It is during this period that microtubules with minus ends distal to the cell body first appear in these processes. The proportion of minus end-distal microtubules gradually increases until, by 7 d in culture, about equal numbers of dendritic microtubules are oriented in each direction. Thus, the establishment of regional differences in microtubule polarity orientation occurs after the initial polarization of the neuron and is temporally correlated with the differentiation of the dendrites.
培养的海马神经元树突中的微管具有不均匀的极性取向。大约一半的微管其正端朝向远离细胞体的方向,另一半的负端朝向远离细胞体的方向;相比之下,轴突中的微管具有均匀的极性取向,所有微管的正端都朝向远离细胞体的方向(巴斯,P.W.,J.S. 戴奇,M.M. 布莱克,和 G.A. 班克。1988年。美国国家科学院院刊。85:8335 - 8339)。在这里,我们描述了导致轴突和树突中微管模式不同的发育变化。培养的海马神经元最初会伸出几个短突起,其中任何一个显然都有可能成为轴突(多蒂,C.G.,和 G.A. 班克。1987年。《自然》[伦敦]。330:477 - 479)。轴突开始快速生长几天后,其余的突起分化为树突(多蒂,C.G.,C.A. 沙利文,和 G.A. 班克。1988年。《神经科学杂志》。8:1454 - 1468)。所有初始突起中微管的极性取向都是均匀的,正端朝向远离细胞体的方向,即使其中大多数突起最终会成为树突。在轴突生长的所有阶段,这种均匀的微管极性取向都得以保持。其他突起中微管的极性取向在它们开始生长并获得树突的形态特征之前一直保持均匀。正是在这个时期,负端朝向远离细胞体方向的微管首次出现在这些突起中。负端朝向远离细胞体方向的微管比例逐渐增加,直到培养7天时,树突微管在每个方向上的数量大致相等。因此,微管极性取向的区域差异是在神经元最初极化之后建立的,并且在时间上与树突的分化相关。