Suppr超能文献

体外和体内的树突含有极性相反的微管,轴突形成与统一的正端向外微管方向相关。

Dendrites In Vitro and In Vivo Contain Microtubules of Opposite Polarity and Axon Formation Correlates with Uniform Plus-End-Out Microtubule Orientation.

作者信息

Yau Kah Wai, Schätzle Philipp, Tortosa Elena, Pagès Stéphane, Holtmaat Anthony, Kapitein Lukas C, Hoogenraad Casper C

机构信息

Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands, and.

Department of Basic Neurosciences, Faculty of Medicine and the Center for Neuroscience, University of Geneva, 1211 Geneva, Switzerland.

出版信息

J Neurosci. 2016 Jan 27;36(4):1071-85. doi: 10.1523/JNEUROSCI.2430-15.2016.

Abstract

UNLABELLED

In cultured vertebrate neurons, axons have a uniform arrangement of microtubules with plus-ends distal to the cell body (plus-end-out), whereas dendrites contain mixed polarity orientations with both plus-end-out and minus-end-out oriented microtubules. Rather than non-uniform microtubules, uniparallel minus-end-out microtubules are the signature of dendrites in Drosophila and Caenorhabditis elegans neurons. To determine whether mixed microtubule organization is a conserved feature of vertebrate dendrites, we used live-cell imaging to systematically analyze microtubule plus-end orientations in primary cultures of rat hippocampal and cortical neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neurons in the somatosensory cortex of living mice. In vitro and in vivo, all microtubules had a plus-end-out orientation in axons, whereas microtubules in dendrites had mixed orientations. When dendritic microtubules were severed by laser-based microsurgery, we detected equal numbers of plus- and minus-end-out microtubule orientations throughout the dendritic processes. In dendrites, the minus-end-out microtubules were generally more stable and comparable with plus-end-out microtubules in axons. Interestingly, at early stages of neuronal development in nonpolarized cells, newly formed neurites already contained microtubules of opposite polarity, suggesting that the establishment of uniform plus-end-out microtubules occurs during axon formation. We propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization.

SIGNIFICANCE STATEMENT

Live-cell imaging was used to systematically analyze microtubule organization in primary cultures of rat hippocampal neurons, dentate granule cells in mouse organotypic slices, and layer 2/3 pyramidal neuron in somatosensory cortex of living mice. In vitro and in vivo, all microtubules have a plus-end-out orientation in axons, whereas microtubules in dendrites have mixed orientations. Interestingly, newly formed neurites of nonpolarized neurons already contain mixed microtubules, and the specific organization of uniform plus-end-out microtubules only occurs during axon formation. Based on these findings, the authors propose a model in which the selective formation of uniform plus-end-out microtubules in the axon is a critical process underlying neuronal polarization.

摘要

未标注

在培养的脊椎动物神经元中,轴突具有均匀排列的微管,其正端远离细胞体(正端向外),而树突包含正端向外和负端向外取向的微管混合极性排列。果蝇和秀丽隐杆线虫神经元中树突的特征并非是微管排列不均匀,而是单向平行的负端向外微管。为了确定微管混合组织是否是脊椎动物树突的保守特征,我们使用活细胞成像技术系统地分析了大鼠海马和皮质神经元原代培养物、小鼠器官型切片中的齿状颗粒细胞以及活体小鼠体感皮层第2/3层锥体神经元中的微管正端取向。在体外和体内,轴突中的所有微管都具有正端向外的取向,而树突中的微管具有混合取向。当通过基于激光的显微手术切断树突微管时,我们在整个树突过程中检测到数量相等的正端向外和负端向外的微管取向。在树突中,负端向外的微管通常更稳定,与轴突中正端向外的微管相当。有趣的是,在非极化细胞的神经元发育早期,新形成的神经突已经包含极性相反的微管,这表明在轴突形成过程中发生了均匀的正端向外微管的建立。我们提出了一个模型,其中轴突中均匀的正端向外微管的选择性形成是神经元极化的关键过程。

意义声明

使用活细胞成像技术系统地分析了大鼠海马神经元原代培养物、小鼠器官型切片中的齿状颗粒细胞以及活体小鼠体感皮层第2/3层锥体神经元中的微管组织。在体外和体内,轴突中的所有微管都具有正端向外的取向,而树突中的微管具有混合取向。有趣的是,非极化神经元新形成的神经突已经包含混合微管,并且均匀的正端向外微管的特定组织仅在轴突形成过程中发生。基于这些发现,作者提出了一个模型,其中轴突中均匀的正端向外微管的选择性形成是神经元极化的关键过程。

相似文献

3
Changes in microtubule polarity orientation during the development of hippocampal neurons in culture.
J Cell Biol. 1989 Dec;109(6 Pt 1):3085-94. doi: 10.1083/jcb.109.6.3085.
5
Microtubules have opposite orientation in axons and dendrites of Drosophila neurons.
Mol Biol Cell. 2008 Oct;19(10):4122-9. doi: 10.1091/mbc.e07-10-1079. Epub 2008 Jul 30.
6
Development of dendrite polarity in Drosophila neurons.
Neural Dev. 2012 Oct 30;7:34. doi: 10.1186/1749-8104-7-34.
8
Microtubule polarity is instructive for many aspects of neuronal polarity.
Dev Biol. 2022 Jun;486:56-70. doi: 10.1016/j.ydbio.2022.03.009. Epub 2022 Mar 25.
9
Depletion of a microtubule-associated motor protein induces the loss of dendritic identity.
J Neurosci. 2000 Aug 1;20(15):5782-91. doi: 10.1523/JNEUROSCI.20-15-05782.2000.
10
Differentiation between Oppositely Oriented Microtubules Controls Polarized Neuronal Transport.
Neuron. 2017 Dec 20;96(6):1264-1271.e5. doi: 10.1016/j.neuron.2017.11.018. Epub 2017 Nov 30.

引用本文的文献

1
Calpain in Traumatic Brain Injury: From Cinderella to Central Player.
Cells. 2025 Aug 14;14(16):1253. doi: 10.3390/cells14161253.
2
Super-resolution imaging of the neuronal cytoskeleton.
Npj Imaging. 2024 Dec 4;2(1):50. doi: 10.1038/s44303-024-00054-y.
3
Mechanisms of brain overgrowth in autism spectrum disorder with macrocephaly.
Front Neurosci. 2025 Jun 6;19:1586550. doi: 10.3389/fnins.2025.1586550. eCollection 2025.
4
Regulation of Axonal Microtubule Polarity Orientation in Different Kinds of Neurons.
FASEB J. 2025 Jun 15;39(11):e70683. doi: 10.1096/fj.202500675RR.
5
'Mitotic' kinesin-5 is a dynamic brake for axonal growth in Drosophila.
Development. 2025 May 1;152(9). doi: 10.1242/dev.204424. Epub 2025 May 8.
6
Evolving Insights into Prickle2 in Neurodevelopment and Neurological Disorders.
Mol Neurobiol. 2025 Feb 26. doi: 10.1007/s12035-025-04795-8.
7
Unveiling the cell biology of hippocampal neurons with dendritic axon origin.
J Cell Biol. 2025 Jan 6;224(1). doi: 10.1083/jcb.202403141. Epub 2024 Nov 4.
8
"Mitotic" kinesin-5 is a dynamic brake for axonal growth.
bioRxiv. 2024 Sep 15:2024.09.12.612721. doi: 10.1101/2024.09.12.612721.
9
The RNA-binding protein EIF4A3 promotes axon development by direct control of the cytoskeleton.
Cell Rep. 2024 Sep 24;43(9):114666. doi: 10.1016/j.celrep.2024.114666. Epub 2024 Aug 24.
10
A methodology for specific disruption of microtubule polymerization into dendritic spines.
Mol Biol Cell. 2024 Jun 1;35(6):mr3. doi: 10.1091/mbc.E24-02-0093. Epub 2024 Apr 17.

本文引用的文献

1
Building the Neuronal Microtubule Cytoskeleton.
Neuron. 2015 Aug 5;87(3):492-506. doi: 10.1016/j.neuron.2015.05.046.
3
Microtubule minus-end-targeting proteins.
Curr Biol. 2015 Feb 16;25(4):R162-71. doi: 10.1016/j.cub.2014.12.027.
4
Axonal transport: cargo-specific mechanisms of motility and regulation.
Neuron. 2014 Oct 22;84(2):292-309. doi: 10.1016/j.neuron.2014.10.019.
5
Effects of kinesin-5 inhibition on dendritic architecture and microtubule organization.
Mol Biol Cell. 2015 Jan 1;26(1):66-77. doi: 10.1091/mbc.E14-08-1313. Epub 2014 Oct 29.
6
An assay to image neuronal microtubule dynamics in mice.
Nat Commun. 2014 Sep 12;5:4827. doi: 10.1038/ncomms5827.
7
Microtubule minus-end binding protein CAMSAP2 controls axon specification and dendrite development.
Neuron. 2014 Jun 4;82(5):1058-73. doi: 10.1016/j.neuron.2014.04.019.
8
Selective microtubule-based transport of dendritic membrane proteins arises in concert with axon specification.
J Neurosci. 2014 Mar 19;34(12):4135-47. doi: 10.1523/JNEUROSCI.3779-13.2014.
9
The relationship between PSD-95 clustering and spine stability in vivo.
J Neurosci. 2014 Feb 5;34(6):2075-86. doi: 10.1523/JNEUROSCI.3353-13.2014.
10
Amyloid-β oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin.
EMBO J. 2013 Nov 13;32(22):2920-37. doi: 10.1038/emboj.2013.207. Epub 2013 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验