Chevereau Guillaume, Bollenbach Tobias
IST Austria, Klosterneuburg, Austria.
IST Austria, Klosterneuburg, Austria
Mol Syst Biol. 2015 Apr 29;11(4):807. doi: 10.15252/msb.20156098.
Drug combinations are increasingly important in disease treatments, for combating drug resistance, and for elucidating fundamental relationships in cell physiology. When drugs are combined, their individual effects on cells may be amplified or weakened. Such drug interactions are crucial for treatment efficacy, but their underlying mechanisms remain largely unknown. To uncover the causes of drug interactions, we developed a systematic approach based on precise quantification of the individual and joint effects of antibiotics on growth of genome-wide Escherichia coli gene deletion strains. We found that drug interactions between antibiotics representing the main modes of action are highly robust to genetic perturbation. This robustness is encapsulated in a general principle of bacterial growth, which enables the quantitative prediction of mutant growth rates under drug combinations. Rare violations of this principle exposed recurring cellular functions controlling drug interactions. In particular, we found that polysaccharide and ATP synthesis control multiple drug interactions with previously unexplained mechanisms, and small molecule adjuvants targeting these functions synthetically reshape drug interactions in predictable ways. These results provide a new conceptual framework for the design of multidrug combinations and suggest that there are universal mechanisms at the heart of most drug interactions.
药物组合在疾病治疗、对抗耐药性以及阐明细胞生理学的基本关系方面日益重要。当药物联合使用时,它们对细胞的个体效应可能会增强或减弱。这种药物相互作用对治疗效果至关重要,但其潜在机制在很大程度上仍不为人知。为了揭示药物相互作用的原因,我们基于精确量化抗生素对全基因组大肠杆菌基因缺失菌株生长的个体和联合效应,开发了一种系统方法。我们发现,代表主要作用模式的抗生素之间的药物相互作用对基因扰动具有高度鲁棒性。这种鲁棒性体现在细菌生长的一个通用原则中,该原则能够定量预测药物组合下突变体的生长速率。对这一原则的罕见违背揭示了控制药物相互作用的反复出现的细胞功能。特别是,我们发现多糖和ATP合成通过以前无法解释的机制控制多种药物相互作用,并且靶向这些功能的小分子佐剂可以以可预测的方式合成重塑药物相互作用。这些结果为多药组合的设计提供了一个新的概念框架,并表明大多数药物相互作用的核心存在通用机制。