FAS Center for Systems Biology, Department of Molecular and Cellular Biology, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):12254-9. doi: 10.1073/pnas.1201281109. Epub 2012 Jul 5.
Drugs are commonly used in combinations larger than two for treating bacterial infection. However, it is generally impossible to infer directly from the effects of individual drugs the net effect of a multidrug combination. Here we develop a mechanism-independent method for predicting the microbial growth response to combinations of more than two drugs. Performing experiments in both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria, we demonstrate that for a wide range of drugs, the bacterial responses to drug pairs are sufficient to infer the effects of larger drug combinations. To experimentally establish the broad applicability of the method, we use drug combinations comprising protein synthesis inhibitors (macrolides, aminoglycosides, tetracyclines, lincosamides, and chloramphenicol), DNA synthesis inhibitors (fluoroquinolones and quinolones), folic acid synthesis inhibitors (sulfonamides and diaminopyrimidines), cell wall synthesis inhibitors, polypeptide antibiotics, preservatives, and analgesics. Moreover, we show that the microbial responses to these drug combinations can be predicted using a simple formula that should be widely applicable in pharmacology. These findings offer a powerful, readily accessible method for the rational design of candidate therapies using combinations of more than two drugs. In addition, the accurate predictions of this framework raise the question of whether the multidrug response in bacteria obeys statistical, rather than chemical, laws for combinations larger than two.
药物通常以大于两种的组合形式用于治疗细菌感染。然而,通常不可能直接从单一药物的作用推断出多药物组合的净效应。在这里,我们开发了一种独立于机制的方法,用于预测两种以上药物组合的微生物生长反应。在革兰氏阴性(大肠杆菌)和革兰氏阳性(金黄色葡萄球菌)细菌中进行实验,我们证明对于广泛的药物,细菌对药物对的反应足以推断出更大的药物组合的效果。为了实验性地确定该方法的广泛适用性,我们使用了包含蛋白质合成抑制剂(大环内酯类、氨基糖苷类、四环素类、林可酰胺类和氯霉素)、DNA 合成抑制剂(氟喹诺酮类和喹诺酮类)、叶酸合成抑制剂(磺胺类和二氨基嘧啶类)、细胞壁合成抑制剂、多肽抗生素、防腐剂和镇痛药的药物组合。此外,我们表明可以使用一个简单的公式来预测这些药物组合对微生物的反应,该公式应该在药理学中具有广泛的适用性。这些发现为使用两种以上药物组合进行候选治疗的合理设计提供了一种强大、易于获取的方法。此外,该框架的准确预测提出了一个问题,即细菌对多药物的反应是否遵循统计规律,而不是化学规律,对于大于两种的组合。