Intelligent Systems Research Centre, Ulster University, Magee Campus, Derry~Londonderry, Northern Ireland, UK.
Faculty of Mathematics and Informatics, Fujian Normal University, Fuzhou, China.
Sci Rep. 2018 Jun 27;8(1):9774. doi: 10.1038/s41598-018-27997-8.
There is currently a lack of an efficient, objective and systemic approach towards the classification of Alzheimer's disease (AD), due to its complex etiology and pathogenesis. As AD is inherently dynamic, it is also not clear how the relationships among AD indicators vary over time. To address these issues, we propose a hybrid computational approach for AD classification and evaluate it on the heterogeneous longitudinal AIBL dataset. Specifically, using clinical dementia rating as an index of AD severity, the most important indicators (mini-mental state examination, logical memory recall, grey matter and cerebrospinal volumes from MRI and active voxels from PiB-PET brain scans, ApoE, and age) can be automatically identified from parallel data mining algorithms. In this work, Bayesian network modelling across different time points is used to identify and visualize time-varying relationships among the significant features, and importantly, in an efficient way using only coarse-grained data. Crucially, our approach suggests key data features and their appropriate combinations that are relevant for AD severity classification with high accuracy. Overall, our study provides insights into AD developments and demonstrates the potential of our approach in supporting efficient AD diagnosis.
目前,由于阿尔茨海默病(AD)病因和发病机制复杂,缺乏有效的、客观的、系统的分类方法。由于 AD 本质上是动态的,因此也不清楚 AD 指标之间的关系随时间如何变化。为了解决这些问题,我们提出了一种用于 AD 分类的混合计算方法,并在异构的 AIBL 纵向数据集上对其进行了评估。具体来说,使用临床痴呆评定量表作为 AD 严重程度的指标,从平行的数据挖掘算法中自动识别最重要的指标(简易精神状态检查、逻辑记忆回忆、MRI 的灰质和脑脊液体积、PiB-PET 脑扫描的活跃体素、ApoE 和年龄)。在这项工作中,跨不同时间点的贝叶斯网络建模用于识别和可视化显著特征之间的时变关系,重要的是,以一种仅使用粗粒度数据的高效方式。至关重要的是,我们的方法提出了关键的数据特征及其合适的组合,这些特征对于 AD 严重程度分类具有很高的准确性。总的来说,我们的研究提供了对 AD 发展的深入了解,并展示了我们的方法在支持高效 AD 诊断方面的潜力。