Suppr超能文献

间歇性低氧诱导的脊髓炎症通过脊髓 p38 丝裂原活化蛋白激酶依赖性机制损害呼吸运动可塑性。

Intermittent Hypoxia-Induced Spinal Inflammation Impairs Respiratory Motor Plasticity by a Spinal p38 MAP Kinase-Dependent Mechanism.

作者信息

Huxtable Adrianne G, Smith Stephanie M C, Peterson Timothy J, Watters Jyoti J, Mitchell Gordon S

机构信息

Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53706, and University of Oregon, Eugene, Oregon 97403.

Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53706, and.

出版信息

J Neurosci. 2015 Apr 29;35(17):6871-80. doi: 10.1523/JNEUROSCI.4539-14.2015.

Abstract

Inflammation is characteristic of most clinical disorders that challenge the neural control of breathing. Since inflammation modulates neuroplasticity, we studied the impact of inflammation caused by prolonged intermittent hypoxia on an important form of respiratory plasticity, acute intermittent hypoxia (three, 5 min hypoxic episodes, 5 min normoxic intervals) induced phrenic long-term facilitation (pLTF). Because chronic intermittent hypoxia elicits neuroinflammation and pLTF is undermined by lipopolysaccharide-induced systemic inflammation, we hypothesized that one night of intermittent hypoxia (IH-1) elicits spinal inflammation, thereby impairing pLTF by a p38 MAP kinase-dependent mechanism. pLTF and spinal inflammation were assessed in anesthetized rats pretreated with IH-1 (2 min hypoxia, 2 min normoxia; 8 h) or sham normoxia and allowed 16 h for recovery. IH-1 (1) transiently increased IL-6 (1.5 ± 0.2-fold; p = 0.02) and inducible nitric oxide synthase (iNOS) (2.4 ± 0.4-fold; p = 0.01) mRNA in cervical spinal homogenates, (2) elicited a sustained increase in IL-1β mRNA (2.4 ± 0.2-fold; p < 0.001) in isolated cervical spinal microglia, and (3) abolished pLTF (-1 ± 5% vs 56 ± 10% in controls; p < 0.001). pLTF was restored after IH-1 by systemic NSAID administration (ketoprofen; 55 ± 9%; p < 0.001) or spinal p38 MAP kinase inhibition (58 ± 2%; p < 0.001). IH-1 increased phosphorylated (activated) p38 MAP kinase immunofluorescence in identified phrenic motoneurons and adjacent microglia. In conclusion, IH-1 elicits spinal inflammation and impairs pLTF by a spinal p38 MAP kinase-dependent mechanism. By targeting inflammation, we may develop strategies to manipulate respiratory motor plasticity for therapeutic advantage when the respiratory control system is compromised (e.g., sleep apnea, apnea of prematurity, spinal injury, or motor neuron disease).

摘要

炎症是大多数挑战呼吸神经控制的临床疾病的特征。由于炎症调节神经可塑性,我们研究了长期间歇性缺氧引起的炎症对呼吸可塑性的一种重要形式——急性间歇性缺氧(三次,每次5分钟缺氧发作,5分钟常氧间隔)诱导的膈神经长期易化(pLTF)的影响。因为慢性间歇性缺氧会引发神经炎症,且脂多糖诱导的全身炎症会破坏pLTF,我们假设一晚的间歇性缺氧(IH-1)会引发脊髓炎症,从而通过p38丝裂原活化蛋白激酶依赖性机制损害pLTF。在接受IH-1(2分钟缺氧,2分钟常氧;8小时)预处理或假常氧处理的麻醉大鼠中评估pLTF和脊髓炎症,并使其恢复16小时。IH-1(1)使颈髓匀浆中白细胞介素-6(IL-6)(1.5±0.2倍;p = 0.02)和诱导型一氧化氮合酶(iNOS)(2.4±0.4倍;p = 0.01)的mRNA短暂增加,(2)使分离的颈髓小胶质细胞中白细胞介素-1β(IL-1β)的mRNA持续增加(2.4±0.2倍;p < 0.001),(3)消除了pLTF(与对照组的56±10%相比为-1±5%;p < 0.001)。全身性非甾体抗炎药(酮洛芬)给药(55±9%;p < 0.001)或脊髓p38丝裂原活化蛋白激酶抑制(58±2%;p < 0.001)后,IH-1后的pLTF得以恢复。IH-1增加了已识别的膈运动神经元和相邻小胶质细胞中磷酸化(活化)p38丝裂原活化蛋白激酶的免疫荧光。总之,IH-1通过脊髓p38丝裂原活化蛋白激酶依赖性机制引发脊髓炎症并损害pLTF。通过针对炎症,当呼吸控制系统受损(如睡眠呼吸暂停、早产儿呼吸暂停、脊髓损伤或运动神经元疾病)时,我们可能会制定策略来操纵呼吸运动可塑性以获得治疗优势。

相似文献

2
Cyclooxygenase enzyme activity does not impair respiratory motor plasticity after one night of intermittent hypoxia.
Respir Physiol Neurobiol. 2018 Oct;256:21-28. doi: 10.1016/j.resp.2017.12.004. Epub 2017 Dec 9.
3
Systemic inflammation inhibits serotonin receptor 2-induced phrenic motor facilitation upstream from BDNF/TrkB signaling.
J Neurophysiol. 2018 Jun 1;119(6):2176-2185. doi: 10.1152/jn.00378.2017. Epub 2018 Mar 7.
4
Systemic LPS induces spinal inflammatory gene expression and impairs phrenic long-term facilitation following acute intermittent hypoxia.
J Appl Physiol (1985). 2013 Apr;114(7):879-87. doi: 10.1152/japplphysiol.01347.2012. Epub 2013 Jan 17.
5
Enhancement of phrenic long-term facilitation following repetitive acute intermittent hypoxia is blocked by the glycolytic inhibitor 2-deoxyglucose.
Am J Physiol Regul Integr Comp Physiol. 2018 Jan 1;314(1):R135-R144. doi: 10.1152/ajpregu.00306.2017. Epub 2017 Oct 11.
7
Adenosine-dependent phrenic motor facilitation is inflammation resistant.
J Neurophysiol. 2017 Feb 1;117(2):836-845. doi: 10.1152/jn.00619.2016. Epub 2016 Dec 7.
9
IL-1 receptor activation undermines respiratory motor plasticity after systemic inflammation.
J Appl Physiol (1985). 2018 Aug 1;125(2):504-512. doi: 10.1152/japplphysiol.01051.2017. Epub 2018 Mar 22.
10
Sustained Hypoxia Elicits Competing Spinal Mechanisms of Phrenic Motor Facilitation.
J Neurosci. 2016 Jul 27;36(30):7877-85. doi: 10.1523/JNEUROSCI.4122-15.2016.

引用本文的文献

1
Microglia and Sleep Disorders.
Adv Neurobiol. 2024;37:357-377. doi: 10.1007/978-3-031-55529-9_20.
2
Sex and genotype influence respiratory function under hypoxic and hypoxic-hypercapnic conditions.
J Neurophysiol. 2024 Jul 1;132(1):23-33. doi: 10.1152/jn.00255.2023. Epub 2024 May 15.
3
APOE4, Age, and Sex Regulate Respiratory Plasticity Elicited by Acute Intermittent Hypercapnic-Hypoxia.
Function (Oxf). 2023 Jun 13;4(5):zqad026. doi: 10.1093/function/zqad026. eCollection 2023.
5
APOE4, Age & Sex Regulate Respiratory Plasticity Elicited By Acute Intermittent Hypercapnic-Hypoxia.
bioRxiv. 2023 Jan 7:2023.01.06.522840. doi: 10.1101/2023.01.06.522840.
6
Fractalkine/CX3CR1-Dependent Modulation of Synaptic and Network Plasticity in Health and Disease.
Neural Plast. 2023 Jan 4;2023:4637073. doi: 10.1155/2023/4637073. eCollection 2023.
7
Role of microglia in blood pressure and respiratory responses to acute hypoxic exposure in rats.
J Physiol Sci. 2022 Oct 13;72(1):26. doi: 10.1186/s12576-022-00848-y.
8
Dose-dependent phosphorylation of endogenous Tau by intermittent hypoxia in rat brain.
J Appl Physiol (1985). 2022 Sep 1;133(3):561-571. doi: 10.1152/japplphysiol.00332.2022. Epub 2022 Jul 21.
10
Therapeutic acute intermittent hypoxia: A translational roadmap for spinal cord injury and neuromuscular disease.
Exp Neurol. 2022 Jan;347:113891. doi: 10.1016/j.expneurol.2021.113891. Epub 2021 Oct 9.

本文引用的文献

1
Therapeutic potential of intermittent hypoxia: a matter of dose.
Am J Physiol Regul Integr Comp Physiol. 2014 Nov 15;307(10):R1181-97. doi: 10.1152/ajpregu.00208.2014. Epub 2014 Sep 17.
2
The polymorphic and contradictory aspects of intermittent hypoxia.
Am J Physiol Lung Cell Mol Physiol. 2014 Jul 15;307(2):L129-40. doi: 10.1152/ajplung.00089.2014. Epub 2014 May 16.
3
Unexpected benefits of intermittent hypoxia: enhanced respiratory and nonrespiratory motor function.
Physiology (Bethesda). 2014 Jan;29(1):39-48. doi: 10.1152/physiol.00012.2013.
4
Daily intermittent hypoxia enhances walking after chronic spinal cord injury: a randomized trial.
Neurology. 2014 Jan 14;82(2):104-13. doi: 10.1212/01.WNL.0000437416.34298.43. Epub 2013 Nov 27.
5
Long-term facilitation of ventilation in humans with chronic spinal cord injury.
Am J Respir Crit Care Med. 2014 Jan 1;189(1):57-65. doi: 10.1164/rccm.201305-0848OC.
6
In vitro effects of SB202190 on Echinococcus granulosus.
Korean J Parasitol. 2013 Apr;51(2):255-8. doi: 10.3347/kjp.2013.51.2.255. Epub 2013 Apr 25.
7
Obstructive sleep apnea and cognitive impairment: addressing the blood-brain barrier.
Sleep Med Rev. 2014 Feb;18(1):35-48. doi: 10.1016/j.smrv.2012.12.003. Epub 2013 Mar 28.
8
Systemic LPS induces spinal inflammatory gene expression and impairs phrenic long-term facilitation following acute intermittent hypoxia.
J Appl Physiol (1985). 2013 Apr;114(7):879-87. doi: 10.1152/japplphysiol.01347.2012. Epub 2013 Jan 17.
9
Intermittent hypoxia and stem cell implants preserve breathing capacity in a rodent model of amyotrophic lateral sclerosis.
Am J Respir Crit Care Med. 2013 Mar 1;187(5):535-42. doi: 10.1164/rccm.201206-1072OC. Epub 2012 Dec 6.
10
Efficient isolation of live microglia with preserved phenotypes from adult mouse brain.
J Neuroinflammation. 2012 Jun 28;9:147. doi: 10.1186/1742-2094-9-147.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验