Huxtable Adrianne G, Smith Stephanie M C, Peterson Timothy J, Watters Jyoti J, Mitchell Gordon S
Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53706, and University of Oregon, Eugene, Oregon 97403.
Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53706, and.
J Neurosci. 2015 Apr 29;35(17):6871-80. doi: 10.1523/JNEUROSCI.4539-14.2015.
Inflammation is characteristic of most clinical disorders that challenge the neural control of breathing. Since inflammation modulates neuroplasticity, we studied the impact of inflammation caused by prolonged intermittent hypoxia on an important form of respiratory plasticity, acute intermittent hypoxia (three, 5 min hypoxic episodes, 5 min normoxic intervals) induced phrenic long-term facilitation (pLTF). Because chronic intermittent hypoxia elicits neuroinflammation and pLTF is undermined by lipopolysaccharide-induced systemic inflammation, we hypothesized that one night of intermittent hypoxia (IH-1) elicits spinal inflammation, thereby impairing pLTF by a p38 MAP kinase-dependent mechanism. pLTF and spinal inflammation were assessed in anesthetized rats pretreated with IH-1 (2 min hypoxia, 2 min normoxia; 8 h) or sham normoxia and allowed 16 h for recovery. IH-1 (1) transiently increased IL-6 (1.5 ± 0.2-fold; p = 0.02) and inducible nitric oxide synthase (iNOS) (2.4 ± 0.4-fold; p = 0.01) mRNA in cervical spinal homogenates, (2) elicited a sustained increase in IL-1β mRNA (2.4 ± 0.2-fold; p < 0.001) in isolated cervical spinal microglia, and (3) abolished pLTF (-1 ± 5% vs 56 ± 10% in controls; p < 0.001). pLTF was restored after IH-1 by systemic NSAID administration (ketoprofen; 55 ± 9%; p < 0.001) or spinal p38 MAP kinase inhibition (58 ± 2%; p < 0.001). IH-1 increased phosphorylated (activated) p38 MAP kinase immunofluorescence in identified phrenic motoneurons and adjacent microglia. In conclusion, IH-1 elicits spinal inflammation and impairs pLTF by a spinal p38 MAP kinase-dependent mechanism. By targeting inflammation, we may develop strategies to manipulate respiratory motor plasticity for therapeutic advantage when the respiratory control system is compromised (e.g., sleep apnea, apnea of prematurity, spinal injury, or motor neuron disease).
炎症是大多数挑战呼吸神经控制的临床疾病的特征。由于炎症调节神经可塑性,我们研究了长期间歇性缺氧引起的炎症对呼吸可塑性的一种重要形式——急性间歇性缺氧(三次,每次5分钟缺氧发作,5分钟常氧间隔)诱导的膈神经长期易化(pLTF)的影响。因为慢性间歇性缺氧会引发神经炎症,且脂多糖诱导的全身炎症会破坏pLTF,我们假设一晚的间歇性缺氧(IH-1)会引发脊髓炎症,从而通过p38丝裂原活化蛋白激酶依赖性机制损害pLTF。在接受IH-1(2分钟缺氧,2分钟常氧;8小时)预处理或假常氧处理的麻醉大鼠中评估pLTF和脊髓炎症,并使其恢复16小时。IH-1(1)使颈髓匀浆中白细胞介素-6(IL-6)(1.5±0.2倍;p = 0.02)和诱导型一氧化氮合酶(iNOS)(2.4±0.4倍;p = 0.01)的mRNA短暂增加,(2)使分离的颈髓小胶质细胞中白细胞介素-1β(IL-1β)的mRNA持续增加(2.4±0.2倍;p < 0.001),(3)消除了pLTF(与对照组的56±10%相比为-1±5%;p < 0.001)。全身性非甾体抗炎药(酮洛芬)给药(55±9%;p < 0.001)或脊髓p38丝裂原活化蛋白激酶抑制(58±2%;p < 0.001)后,IH-1后的pLTF得以恢复。IH-1增加了已识别的膈运动神经元和相邻小胶质细胞中磷酸化(活化)p38丝裂原活化蛋白激酶的免疫荧光。总之,IH-1通过脊髓p38丝裂原活化蛋白激酶依赖性机制引发脊髓炎症并损害pLTF。通过针对炎症,当呼吸控制系统受损(如睡眠呼吸暂停、早产儿呼吸暂停、脊髓损伤或运动神经元疾病)时,我们可能会制定策略来操纵呼吸运动可塑性以获得治疗优势。