Suppr超能文献

DuSK:一种用于监督张量学习的双结构保持核及其在神经图像中的应用。

DuSK: A Dual Structure-preserving Kernel for Supervised Tensor Learning with Applications to Neuroimages.

作者信息

He Lifang, Kong Xiangnan, Yu Philip S, Ragin Ann B, Hao Zhifeng, Yang Xiaowei

机构信息

Computer Science and Engineering, South China University of Technology, China.

Computer Science Department, University of Illinois at Chicago, USA.

出版信息

Proc SIAM Int Conf Data Min. 2014;2014:127-135. doi: 10.1137/1.9781611973440.15.

Abstract

With advances in data collection technologies, tensor data is assuming increasing prominence in many applications and the problem of supervised tensor learning has emerged as a topic of critical significance in the data mining and machine learning community. Conventional methods for supervised tensor learning mainly focus on learning kernels by flattening the tensor into vectors or matrices, however structural information within the tensors will be lost. In this paper, we introduce a new scheme to design structure-preserving kernels for supervised tensor learning. Specifically, we demonstrate how to leverage the naturally available structure within the tensorial representation to encode prior knowledge in the kernel. We proposed a tensor kernel that can preserve tensor structures based upon dual-tensorial mapping. The dual-tensorial mapping function can map each tensor instance in the input space to another tensor in the feature space while preserving the tensorial structure. Theoretically, our approach is an extension of the conventional kernels in the vector space to tensor space. We applied our novel kernel in conjunction with SVM to real-world tensor classification problems including brain fMRI classification for three different diseases (., Alzheimer's disease, ADHD and brain damage by HIV). Extensive empirical studies demonstrate that our proposed approach can effectively boost tensor classification performances, particularly with small sample sizes.

摘要

随着数据收集技术的进步,张量数据在许多应用中变得越来越重要,监督张量学习问题已成为数据挖掘和机器学习社区中具有关键意义的主题。传统的监督张量学习方法主要集中于通过将张量展平为向量或矩阵来学习核,然而张量内部的结构信息将会丢失。在本文中,我们引入了一种新的方案来为监督张量学习设计保结构核。具体而言,我们展示了如何利用张量表示中自然可用的结构来在核中编码先验知识。我们提出了一种基于双张量映射的能够保留张量结构的张量核。双张量映射函数可以将输入空间中的每个张量实例映射到特征空间中的另一个张量,同时保留张量结构。从理论上讲,我们的方法是向量空间中传统核到张量空间的扩展。我们将我们的新型核与支持向量机相结合应用于实际的张量分类问题,包括针对三种不同疾病(即阿尔茨海默病、注意力缺陷多动障碍和由艾滋病毒导致的脑损伤)的脑功能磁共振成像分类。大量的实证研究表明,我们提出的方法能够有效地提高张量分类性能,特别是在小样本量的情况下。

相似文献

2
A kernel-based framework to tensorial data analysis.基于核的张量数据分析框架。
Neural Netw. 2011 Oct;24(8):861-74. doi: 10.1016/j.neunet.2011.05.011. Epub 2011 Jun 12.
3
Reduced multiple empirical kernel learning machine.简化的多重经验核学习机
Cogn Neurodyn. 2015 Feb;9(1):63-73. doi: 10.1007/s11571-014-9304-2. Epub 2014 Jul 29.
4
A Novel Framework for Learning Geometry-Aware Kernels.一种用于学习几何感知核的新框架。
IEEE Trans Neural Netw Learn Syst. 2016 May;27(5):939-51. doi: 10.1109/TNNLS.2015.2429682. Epub 2015 Jun 5.
5
Vicinal support vector classifier using supervised kernel-based clustering.基于监督核聚类的邻接支持向量分类器。
Artif Intell Med. 2014 Mar;60(3):189-96. doi: 10.1016/j.artmed.2014.01.003. Epub 2014 Feb 7.
6
Semi-supervised learning for ordinal Kernel Discriminant Analysis.基于半监督学习的有序核判别分析。
Neural Netw. 2016 Dec;84:57-66. doi: 10.1016/j.neunet.2016.08.004. Epub 2016 Aug 25.
7
A Fast Reduced Kernel Extreme Learning Machine.一种快速简化核极限学习机。
Neural Netw. 2016 Apr;76:29-38. doi: 10.1016/j.neunet.2015.10.006. Epub 2016 Jan 6.
9
A linear support higher-order tensor machine for classification.一种用于分类的线性支持高阶张量机。
IEEE Trans Image Process. 2013 Jul;22(7):2911-20. doi: 10.1109/TIP.2013.2253485. Epub 2013 Mar 20.
10
Support vector machine with Dirichlet feature mapping.支持向量机与狄利克雷特征映射。
Neural Netw. 2018 Feb;98:87-101. doi: 10.1016/j.neunet.2017.11.006. Epub 2017 Nov 16.

本文引用的文献

2
A linear support higher-order tensor machine for classification.一种用于分类的线性支持高阶张量机。
IEEE Trans Image Process. 2013 Jul;22(7):2911-20. doi: 10.1109/TIP.2013.2253485. Epub 2013 Mar 20.
4
Tensor learning for regression.张量回归学习。
IEEE Trans Image Process. 2012 Feb;21(2):816-27. doi: 10.1109/TIP.2011.2165291. Epub 2011 Aug 18.
5
A kernel-based framework to tensorial data analysis.基于核的张量数据分析框架。
Neural Netw. 2011 Oct;24(8):861-74. doi: 10.1016/j.neunet.2011.05.011. Epub 2011 Jun 12.
6
MPCA: Multilinear Principal Component Analysis of Tensor Objects.MPCA:张量对象的多线性主成分分析
IEEE Trans Neural Netw. 2008 Jan;19(1):18-39. doi: 10.1109/TNN.2007.901277.
7
Multilinear discriminant analysis for face recognition.用于人脸识别的多线性判别分析。
IEEE Trans Image Process. 2007 Jan;16(1):212-20. doi: 10.1109/tip.2006.884929.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验