He Lifang, Kong Xiangnan, Yu Philip S, Ragin Ann B, Hao Zhifeng, Yang Xiaowei
Computer Science and Engineering, South China University of Technology, China.
Computer Science Department, University of Illinois at Chicago, USA.
Proc SIAM Int Conf Data Min. 2014;2014:127-135. doi: 10.1137/1.9781611973440.15.
With advances in data collection technologies, tensor data is assuming increasing prominence in many applications and the problem of supervised tensor learning has emerged as a topic of critical significance in the data mining and machine learning community. Conventional methods for supervised tensor learning mainly focus on learning kernels by flattening the tensor into vectors or matrices, however structural information within the tensors will be lost. In this paper, we introduce a new scheme to design structure-preserving kernels for supervised tensor learning. Specifically, we demonstrate how to leverage the naturally available structure within the tensorial representation to encode prior knowledge in the kernel. We proposed a tensor kernel that can preserve tensor structures based upon dual-tensorial mapping. The dual-tensorial mapping function can map each tensor instance in the input space to another tensor in the feature space while preserving the tensorial structure. Theoretically, our approach is an extension of the conventional kernels in the vector space to tensor space. We applied our novel kernel in conjunction with SVM to real-world tensor classification problems including brain fMRI classification for three different diseases (., Alzheimer's disease, ADHD and brain damage by HIV). Extensive empirical studies demonstrate that our proposed approach can effectively boost tensor classification performances, particularly with small sample sizes.
随着数据收集技术的进步,张量数据在许多应用中变得越来越重要,监督张量学习问题已成为数据挖掘和机器学习社区中具有关键意义的主题。传统的监督张量学习方法主要集中于通过将张量展平为向量或矩阵来学习核,然而张量内部的结构信息将会丢失。在本文中,我们引入了一种新的方案来为监督张量学习设计保结构核。具体而言,我们展示了如何利用张量表示中自然可用的结构来在核中编码先验知识。我们提出了一种基于双张量映射的能够保留张量结构的张量核。双张量映射函数可以将输入空间中的每个张量实例映射到特征空间中的另一个张量,同时保留张量结构。从理论上讲,我们的方法是向量空间中传统核到张量空间的扩展。我们将我们的新型核与支持向量机相结合应用于实际的张量分类问题,包括针对三种不同疾病(即阿尔茨海默病、注意力缺陷多动障碍和由艾滋病毒导致的脑损伤)的脑功能磁共振成像分类。大量的实证研究表明,我们提出的方法能够有效地提高张量分类性能,特别是在小样本量的情况下。