†Nano-Device Laboratory (NDL), Department of Electrical and Computer Engineering, University of California-Riverside, Riverside, California 92521, United States.
‡Phonon Optimized Engineered Materials (POEM) Center, Materials Science and Engineering Program, University of California-Riverside, Riverside, California 92521, United States.
Nano Lett. 2015 May 13;15(5):2965-73. doi: 10.1021/nl504811s. Epub 2015 May 4.
Bulk 1T-TaSe2 exhibits unusually high charge density wave (CDW) transition temperatures of 600 and 473 K below which the material exists in the incommensurate (I-CDW) and the commensurate (C-CDW) charge-density-wave phases, respectively. The (13)(1/2) × (13)(1/2) C-CDW reconstruction of the lattice coincides with new Raman peaks resulting from zone-folding of phonon modes from middle regions of the original Brillouin zone back to Γ. The C-CDW transition temperatures as a function of film thickness are determined from the evolution of these new Raman peaks, and they are found to decrease from 473 to 413 K as the film thicknesses decrease from 150 to 35 nm. A comparison of the Raman data with ab initio calculations of both the normal and C-CDW phases gives a consistent picture of the zone-folding of the phonon modes following lattice reconstruction. The Raman peak at ∼154 cm(-1) originates from the zone-folded phonons in the C-CDW phase. In the I-CDW phase, the loss of translational symmetry coincides with a strong suppression and broadening of the Raman peaks. The observed change in the C-CDW transition temperature is consistent with total energy calculations of bulk and monolayer 1T-TaSe2.
块状 1T-TaSe2 具有异常高的电荷密度波 (CDW) 转变温度,分别为 600 K 和 473 K 以下,在这些温度下,材料分别存在于非共辄 (I-CDW) 和共辄 (C-CDW) 电荷密度波相中。晶格的 (13)(1/2)×(13)(1/2) C-CDW 重构与新的拉曼峰相吻合,这些新的拉曼峰是由来自原始布里渊区中部的声子模式的折叠区域回到 Γ 引起的。通过这些新拉曼峰的演化来确定 C-CDW 转变温度与薄膜厚度的关系,发现随着薄膜厚度从 150nm 降低到 35nm,C-CDW 转变温度从 473K 降低到 413K。拉曼数据与正常相和 C-CDW 相的从头计算的比较给出了晶格重构后声子模式折叠的一致图像。约 154cm(-1) 的拉曼峰源于 C-CDW 相中的折叠声子。在 I-CDW 相中,平移对称性的丧失与拉曼峰的强烈抑制和展宽相对应。观察到的 C-CDW 转变温度的变化与块状和单层 1T-TaSe2 的总能量计算一致。