Suppr超能文献

炭疽芽孢杆菌Eis家族氨基糖苷乙酰转移酶的生化与结构分析

Biochemical and structural analysis of an Eis family aminoglycoside acetyltransferase from bacillus anthracis.

作者信息

Green Keith D, Biswas Tapan, Chang Changsoo, Wu Ruiying, Chen Wenjing, Janes Brian K, Chalupska Dominika, Gornicki Piotr, Hanna Philip C, Tsodikov Oleg V, Joachimiak Andrzej, Garneau-Tsodikova Sylvie

机构信息

⊥Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536-0596, United States.

∇Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439, United States.

出版信息

Biochemistry. 2015 May 26;54(20):3197-206. doi: 10.1021/acs.biochem.5b00244. Epub 2015 May 12.

Abstract

Proteins from the enhanced intracellular survival (Eis) family are versatile acetyltransferases that acetylate amines at multiple positions of several aminoglycosides (AGs). Their upregulation confers drug resistance. Homologues of Eis are present in diverse bacteria, including many pathogens. Eis from Mycobacterium tuberculosis (Eis_Mtb) has been well characterized. In this study, we explored the AG specificity and catalytic efficiency of the Eis family protein from Bacillus anthracis (Eis_Ban). Kinetic analysis of specificity and catalytic efficiency of acetylation of six AGs indicates that Eis_Ban displays significant differences from Eis_Mtb in both substrate binding and catalytic efficiency. The number of acetylated amines was also different for several AGs, indicating a distinct regiospecificity of Eis_Ban. Furthermore, most recently identified inhibitors of Eis_Mtb did not inhibit Eis_Ban, underscoring the differences between these two enzymes. To explain these differences, we determined an Eis_Ban crystal structure. The comparison of the crystal structures of Eis_Ban and Eis_Mtb demonstrates that critical residues lining their respective substrate binding pockets differ substantially, explaining their distinct specificities. Our results suggest that acetyltransferases of the Eis family evolved divergently to garner distinct specificities while conserving catalytic efficiency, possibly to counter distinct chemical challenges. The unique specificity features of these enzymes can be utilized as tools for developing AGs with novel modifications and help guide specific AG treatments to avoid Eis-mediated resistance.

摘要

增强型细胞内存活(Eis)家族的蛋白质是多功能乙酰转移酶,可在几种氨基糖苷类(AGs)的多个位置将胺乙酰化。它们的上调赋予耐药性。Eis的同源物存在于多种细菌中,包括许多病原体。结核分枝杆菌的Eis(Eis_Mtb)已得到充分表征。在本研究中,我们探索了炭疽芽孢杆菌Eis家族蛋白(Eis_Ban)的AG特异性和催化效率。对六种AGs乙酰化特异性和催化效率的动力学分析表明,Eis_Ban在底物结合和催化效率方面与Eis_Mtb均存在显著差异。几种AGs的乙酰化胺数量也不同,表明Eis_Ban具有独特的区域特异性。此外,最近发现的大多数Eis_Mtb抑制剂对Eis_Ban没有抑制作用,凸显了这两种酶之间的差异。为了解释这些差异,我们确定了Eis_Ban的晶体结构。Eis_Ban和Eis_Mtb晶体结构的比较表明,它们各自底物结合口袋周围的关键残基有很大差异,这解释了它们不同的特异性。我们的结果表明,Eis家族的乙酰转移酶在进化过程中发生了分歧,以获得不同的特异性,同时保持催化效率,这可能是为了应对不同的化学挑战。这些酶独特的特异性特征可作为开发具有新型修饰的AGs的工具,并有助于指导特定的AG治疗以避免Eis介导的耐药性。

相似文献

1
Biochemical and structural analysis of an Eis family aminoglycoside acetyltransferase from bacillus anthracis.
Biochemistry. 2015 May 26;54(20):3197-206. doi: 10.1021/acs.biochem.5b00244. Epub 2015 May 12.
5
Chemical and structural insights into the regioversatility of the aminoglycoside acetyltransferase Eis.
Chembiochem. 2013 Nov 4;14(16):2127-35. doi: 10.1002/cbic.201300359. Epub 2013 Sep 17.
6
Eis, a novel family of arylalkylamine N-acetyltransferase (EC 2.3.1.87).
Sci Rep. 2018 Feb 5;8(1):2435. doi: 10.1038/s41598-018-20802-6.
7
Acetylation by Eis and Deacetylation by Rv1151c of Mycobacterium tuberculosis HupB: Biochemical and Structural Insight.
Biochemistry. 2018 Feb 6;57(5):781-790. doi: 10.1021/acs.biochem.7b01089. Epub 2018 Jan 18.
9
Potent 1,2,4-Triazino[5,6 b]indole-3-thioether Inhibitors of the Kanamycin Resistance Enzyme Eis from Mycobacterium tuberculosis.
ACS Infect Dis. 2018 Jun 8;4(6):1030-1040. doi: 10.1021/acsinfecdis.8b00074. Epub 2018 Mar 30.
10
Structure-Guided Optimization of Inhibitors of Acetyltransferase Eis from .
ACS Chem Biol. 2020 Jun 19;15(6):1581-1594. doi: 10.1021/acschembio.0c00184. Epub 2020 May 18.

引用本文的文献

1
Programming interchangeable and reversible heterooligomeric protein self-assembly using a bifunctional ligand.
Chem Sci. 2024 Jan 23;15(8):2975-2983. doi: 10.1039/d3sc05448a. eCollection 2024 Feb 22.
2
Discovery and development of inhibitors of acetyltransferase Eis to combat Mycobacterium tuberculosis.
Methods Enzymol. 2023;690:369-396. doi: 10.1016/bs.mie.2023.06.017. Epub 2023 Jul 27.
3
Discovery and Mechanistic Analysis of Structurally Diverse Inhibitors of Acetyltransferase Eis among FDA-Approved Drugs.
Biochemistry. 2023 Feb 7;62(3):710-721. doi: 10.1021/acs.biochem.2c00658. Epub 2023 Jan 19.
4
Discovery of substituted benzyloxy-benzylamine inhibitors of acetyltransferase Eis and their anti-mycobacterial activity.
Eur J Med Chem. 2022 Nov 15;242:114698. doi: 10.1016/j.ejmech.2022.114698. Epub 2022 Aug 18.
5
Structure-Guided Optimization of Inhibitors of Acetyltransferase Eis from .
ACS Chem Biol. 2020 Jun 19;15(6):1581-1594. doi: 10.1021/acschembio.0c00184. Epub 2020 May 18.
6
Diverse protein assembly driven by metal and chelating amino acids with selectivity and tunability.
Nat Commun. 2019 Dec 5;10(1):5545. doi: 10.1038/s41467-019-13491-w.
7
Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria.
Molecules. 2019 Sep 21;24(19):3430. doi: 10.3390/molecules24193430.
9
Mycobacterial Aminoglycoside Acetyltransferases: A Little of Drug Resistance, and a Lot of Other Roles.
Front Microbiol. 2019 Jan 30;10:46. doi: 10.3389/fmicb.2019.00046. eCollection 2019.
10
Acetylation by Eis and Deacetylation by Rv1151c of Mycobacterium tuberculosis HupB: Biochemical and Structural Insight.
Biochemistry. 2018 Feb 6;57(5):781-790. doi: 10.1021/acs.biochem.7b01089. Epub 2018 Jan 18.

本文引用的文献

1
A novel cofactor-binding mode in bacterial IMP dehydrogenases explains inhibitor selectivity.
J Biol Chem. 2015 Feb 27;290(9):5893-911. doi: 10.1074/jbc.M114.619767. Epub 2015 Jan 8.
3
A random sequential mechanism of aminoglycoside acetylation by Mycobacterium tuberculosis Eis protein.
PLoS One. 2014 Apr 3;9(4):e92370. doi: 10.1371/journal.pone.0092370. eCollection 2014.
4
Microevolution during an Anthrax outbreak leading to clonal heterogeneity and penicillin resistance.
PLoS One. 2014 Feb 13;9(2):e89112. doi: 10.1371/journal.pone.0089112. eCollection 2014.
5
Chemical and structural insights into the regioversatility of the aminoglycoside acetyltransferase Eis.
Chembiochem. 2013 Nov 4;14(16):2127-35. doi: 10.1002/cbic.201300359. Epub 2013 Sep 17.
6
Discovery of inhibitors of Bacillus anthracis primase DnaG.
Biochemistry. 2013 Oct 1;52(39):6905-10. doi: 10.1021/bi4011286. Epub 2013 Sep 19.
8
Unexpected N-acetylation of capreomycin by mycobacterial Eis enzymes.
J Antimicrob Chemother. 2013 Apr;68(4):800-5. doi: 10.1093/jac/dks497. Epub 2012 Dec 11.
10
Cosubstrate tolerance of the aminoglycoside resistance enzyme Eis from Mycobacterium tuberculosis.
Antimicrob Agents Chemother. 2012 Nov;56(11):5831-8. doi: 10.1128/AAC.00932-12. Epub 2012 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验