Hammerstrom Troy G, Horton Lori B, Swick Michelle C, Joachimiak Andrzej, Osipiuk Jerzy, Koehler Theresa M
Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, USA.
Mol Microbiol. 2015 Feb;95(3):426-41. doi: 10.1111/mmi.12867. Epub 2014 Dec 30.
The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthetic operon. AtxA activity is elevated during growth in media containing glucose and CO(2)/bicarbonate, and there is a positive correlation between the CO(2)/bicarbonate signal, AtxA activity and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His→Asp) and phosphoablative (His→Ala) amino acid changes for activity in B. anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (i) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (ii) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator, and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.
炭疽芽孢杆菌毒力调节因子AtxA控制炭疽毒素基因和荚膜生物合成操纵子的转录。在含有葡萄糖和CO₂/碳酸氢盐的培养基中生长期间,AtxA的活性会升高,并且CO₂/碳酸氢盐信号、AtxA活性和同型多聚化之间存在正相关。AtxA的活性也受到特定组氨酸磷酸化的影响。我们发现AtxA以二聚体形式结晶。与预测的DNA结合结构域(HTH1和HTH2)以及磷酸烯醇丙酮酸:碳水化合物磷酸转移酶系统调节结构域(PRD1和PRD2)相关的不同折叠是明显的。我们测试了含有单磷酸模拟(His→Asp)和双磷酸模拟(His→Asp)以及磷酸化缺失(His→Ala)氨基酸变化的AtxA变体在炭疽芽孢杆菌培养物中的活性以及在细胞裂解物中的蛋白质-蛋白质相互作用。AtxA H199A活性降低、AtxAH379D变体缺乏多聚化和活性,以及与磷酸化相关的预测结构变化支持了AtxA功能控制的模型。我们提出:(i)在AtxA二聚体中,PRD1中H199的磷酸化影响HTH2的定位,从而影响DNA结合;(ii)PRD2中H379的磷酸化破坏二聚体形成。AtxA结构是首次报道的含PRD调节因子的高分辨率全长结构,可作为该家族蛋白质的模型,尤其是那些将毒力与细菌代谢联系起来的蛋白质。