Suppr超能文献

基于扩增的 microRNA 检测方法。

Amplification-based method for microRNA detection.

机构信息

Research Center for Learning Science, Southeast University, Sipailou road no. 2, Nanjing, Jiangsu Province 2100096, PR China.

Research Center for Learning Science, Southeast University, Sipailou road no. 2, Nanjing, Jiangsu Province 2100096, PR China; State Key Laboratory of Bioelectronics, Southeast University, Sipailou road no. 2, Nanjing, Jiangsu Province 2100096, PR China.

出版信息

Biosens Bioelectron. 2015 Sep 15;71:322-331. doi: 10.1016/j.bios.2015.04.057. Epub 2015 Apr 21.

Abstract

Over the last two decades, the study of miRNAs has attracted tremendous attention since they regulate gene expression post-transcriptionally and have been demonstrated to be dysregulated in many diseases. Detection methods with higher sensitivity, specificity and selectivity between precursors and mature microRNAs are urgently needed and widely studied. This review gave an overview of the amplification-based technologies including traditional methods, current modified methods and the cross-platforms of them combined with other techniques. Many progresses were found in the modified amplification-based microRNA detection methods, while traditional platforms could not be replaced until now. Several sample-specific normalizers had been validated, suggesting that the different normalizers should be established for different sample types and the combination of several normalizers might be more appropriate than a single universal normalizer. This systematic overview would be useful to provide comprehensive information for subsequent related studies and could reduce the un-necessary repetition in the future.

摘要

在过去的二十年中,miRNAs 的研究引起了极大的关注,因为它们在后转录水平上调节基因表达,并且已经在许多疾病中被证明失调。因此,人们迫切需要并广泛研究具有更高灵敏度、特异性和选择性的前体和成熟 microRNA 之间的检测方法。本综述概述了基于扩增的技术,包括传统方法、当前的改进方法以及它们与其他技术相结合的跨平台技术。在改进的基于扩增的 microRNA 检测方法方面取得了许多进展,而传统平台至今仍无法被取代。已经验证了几种特定于样本的归一化因子,这表明对于不同的样本类型应该建立不同的归一化因子,并且几种归一化因子的组合可能比单个通用归一化因子更合适。这一系统综述将有助于为后续的相关研究提供全面的信息,并减少未来不必要的重复。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验