Leibold N K, van den Hove D L A, Esquivel G, De Cort K, Goossens L, Strackx E, Buchanan G F, Steinbusch H W M, Lesch K P, Schruers K R J
Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), P.O. Box 616, 6200 MD Maastricht, The Netherlands; Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany.
Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; School for Mental Health and Neuroscience (MHeNS), Maastricht University, European Graduate School of Neuroscience (EURON), P.O. Box 616, 6200 MD Maastricht, The Netherlands.
Prog Neurobiol. 2015 Jun;129:58-78. doi: 10.1016/j.pneurobio.2015.04.001. Epub 2015 Apr 27.
Panic attacks (PAs), the core feature of panic disorder, represent a common phenomenon in the general adult population and are associated with a considerable decrease in quality of life and high health care costs. To date, the underlying pathophysiology of PAs is not well understood. A unique feature of PAs is that they represent a rare example of a psychopathological phenomenon that can be reliably modeled in the laboratory in panic disorder patients and healthy volunteers. The most effective techniques to experimentally trigger PAs are those that acutely disturb the acid-base homeostasis in the brain: inhalation of carbon dioxide (CO2), hyperventilation, and lactate infusion. This review particularly focuses on the use of CO2 inhalation in humans and rodents as an experimental model of panic. Besides highlighting the different methodological approaches, the cardio-respiratory and the endocrine responses to CO2 inhalation are summarized. In addition, the relationships between CO2 level, changes in brain pH, the serotonergic system, and adaptive physiological and behavioral responses to CO2 exposure are presented. We aim to present an integrated psychological and neurobiological perspective. Remaining gaps in the literature and future perspectives are discussed.
惊恐发作(PAs)是惊恐障碍的核心特征,在普通成年人群中是一种常见现象,与生活质量的显著下降和高昂的医疗费用相关。迄今为止,惊恐发作的潜在病理生理学尚未得到很好的理解。惊恐发作的一个独特之处在于,它是一种罕见的精神病理现象,在惊恐障碍患者和健康志愿者中可以在实验室中可靠地模拟。实验性诱发惊恐发作的最有效技术是那些能急性扰乱大脑酸碱平衡的技术:吸入二氧化碳(CO2)、过度换气和输注乳酸盐。本综述特别关注在人类和啮齿动物中使用吸入二氧化碳作为惊恐的实验模型。除了强调不同的方法学途径外,还总结了吸入二氧化碳时的心肺和内分泌反应。此外,还介绍了二氧化碳水平、脑pH值变化、血清素能系统以及对二氧化碳暴露的适应性生理和行为反应之间的关系。我们旨在呈现一个综合的心理学和神经生物学视角。文中还讨论了文献中存在的空白和未来的研究方向。