Suppr超能文献

结构证据表明,过氧化物酶的催化能力基于过渡态稳定化。

Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization.

机构信息

Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.

出版信息

J Mol Biol. 2010 Sep 10;402(1):194-209. doi: 10.1016/j.jmb.2010.07.022. Epub 2010 Jul 17.

Abstract

Peroxiredoxins (Prxs) are important peroxidases associated with both antioxidant protection and redox signaling. They use a conserved Cys residue to reduce peroxide substrates. The Prxs have a remarkably high catalytic efficiency that makes them a dominant player in cell-wide peroxide reduction, but the origins of their high activity have been mysterious. We present here a novel structure of human PrxV at 1.45 A resolution that has a dithiothreitol bound in the active site with its diol moiety mimicking the two oxygens of a peroxide substrate. This suggests diols and similar di-oxygen compounds as a novel class of competitive inhibitors for the Prxs. Common features of this and other structures containing peroxide, peroxide-mimicking ligands, or peroxide-mimicking water molecules reveal hydrogen bonding and steric factors that promote its high reactivity by creating an oxygen track along which the peroxide oxygens move as the reaction proceeds. Key insights include how the active-site microenvironment activates both the peroxidatic cysteine side chain and the peroxide substrate and how it is exquisitely well suited to stabilize the transition state of the in-line S(N)2 substitution reaction that is peroxidation.

摘要

过氧化物酶(Prxs)是与抗氧化保护和氧化还原信号相关的重要过氧化物酶。它们使用保守的 Cys 残基还原过氧化物底物。Prxs 具有非常高的催化效率,使其成为细胞内过氧化物还原的主要参与者,但它们高活性的起源一直是个谜。我们在这里展示了一个新的人类 PrxV 结构,分辨率为 1.45A,在活性位点结合了 DTT,其二醇部分模拟过氧化物底物的两个氧。这表明二醇和类似的双氧化合物是 Prxs 的一类新的竞争性抑制剂。含有过氧化物、过氧化物模拟配体或过氧化物模拟水分子的这些和其他结构的共同特征揭示了氢键和空间位阻因素,通过在反应过程中创建一个氧轨道,促进其高反应性,过氧化物的氧沿着该氧轨道移动,作为反应的进行。关键的见解包括活性位点微环境如何激活过氧催化半胱氨酸侧链和过氧化物底物,以及它如何非常适合稳定直链 S(N)2 取代反应的过渡态,该反应即为过氧化物。

相似文献

1
Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization.
J Mol Biol. 2010 Sep 10;402(1):194-209. doi: 10.1016/j.jmb.2010.07.022. Epub 2010 Jul 17.
2
Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins.
Antioxid Redox Signal. 2011 Aug 1;15(3):795-815. doi: 10.1089/ars.2010.3624. Epub 2011 Apr 20.
3
Overview on Peroxiredoxin.
Mol Cells. 2016 Jan;39(1):1-5. doi: 10.14348/molcells.2016.2368.
4
Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite.
Subcell Biochem. 2007;44:83-113. doi: 10.1007/978-1-4020-6051-9_5.
6
Structure of TSA2 reveals novel features of the active-site loop of peroxiredoxins.
Acta Crystallogr D Struct Biol. 2016 Jan;72(Pt 1):158-67. doi: 10.1107/S2059798315023815. Epub 2016 Jan 1.
7
Experimentally Dissecting the Origins of Peroxiredoxin Catalysis.
Antioxid Redox Signal. 2018 Mar 1;28(7):521-536. doi: 10.1089/ars.2016.6922. Epub 2017 Apr 4.
8
Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols.
Chem Rev. 2019 Oct 9;119(19):10829-10855. doi: 10.1021/acs.chemrev.9b00371. Epub 2019 Sep 9.
9
Active site C-loop dynamics modulate substrate binding, catalysis, oligomerization, stability, over-oxidation and recycling of 2-Cys Peroxiredoxins.
Free Radic Biol Med. 2018 Apr;118:59-70. doi: 10.1016/j.freeradbiomed.2018.02.027. Epub 2018 Feb 21.
10
Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling.
Trends Biochem Sci. 2015 Aug;40(8):435-45. doi: 10.1016/j.tibs.2015.05.001. Epub 2015 Jun 9.

引用本文的文献

1
The Ensemble Basis of Allostery and Function: Insights from Models of Local Unfolding.
J Mol Biol. 2025 Jun 9:169287. doi: 10.1016/j.jmb.2025.169287.
2
Reactive Oxygen Species (ROS) in Metabolic Disease-Don't Shoot the Metabolic Messenger.
Int J Mol Sci. 2025 Mar 14;26(6):2622. doi: 10.3390/ijms26062622.
3
Determination of Thiol Protonation States by Sulfur X-ray Spectroscopy in Biological Systems.
J Phys Chem Lett. 2025 Mar 6;16(9):2401-2408. doi: 10.1021/acs.jpclett.4c03247. Epub 2025 Feb 26.
5
Antioxidative effects of N-acetylcysteine in patients with β-thalassemia: A quick review on clinical trials.
Health Sci Rep. 2024 Oct 7;7(10):e70096. doi: 10.1002/hsr2.70096. eCollection 2024 Oct.
6
Myricanol prevents aging-related sarcopenia by rescuing mitochondrial dysfunction via targeting peroxiredoxin 5.
MedComm (2020). 2024 Jun 12;5(6):e566. doi: 10.1002/mco2.566. eCollection 2024 Jun.
7
Peroxiredoxin 2: An Important Element of the Antioxidant Defense of the Erythrocyte.
Antioxidants (Basel). 2023 Apr 27;12(5):1012. doi: 10.3390/antiox12051012.
9
Coordinated NADPH oxidase/hydrogen peroxide functions regulate cutaneous sensory axon de- and regeneration.
Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2115009119. doi: 10.1073/pnas.2115009119. Epub 2022 Jul 19.

本文引用的文献

1
Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling.
Biochem J. 2009 Dec 23;425(2):313-25. doi: 10.1042/BJ20091541.
2
Crystal structure of peroxiredoxin from Aeropyrum pernix K1 complexed with its substrate, hydrogen peroxide.
J Biochem. 2010 Jan;147(1):109-15. doi: 10.1093/jb/mvp154. Epub 2009 Oct 9.
4
Typical 2-Cys peroxiredoxins--structures, mechanisms and functions.
FEBS J. 2009 May;276(9):2469-77. doi: 10.1111/j.1742-4658.2009.06985.x. Epub 2009 Mar 24.
6
Cysteine pK(a) values for the bacterial peroxiredoxin AhpC.
Biochemistry. 2008 Dec 2;47(48):12860-8. doi: 10.1021/bi801718d.
8
Reconciling the chemistry and biology of reactive oxygen species.
Nat Chem Biol. 2008 May;4(5):278-86. doi: 10.1038/nchembio.85.
10
Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin.
Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8209-14. doi: 10.1073/pnas.0708308105. Epub 2007 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验