Suppr超能文献

Uptake and release of glycine in cerebellar granule cells and astrocytes in primary culture: potassium-stimulated release from granule cells is calcium-dependent.

作者信息

Holopainen I, Kontro P

机构信息

Department of Biomedical Sciences, University of Tampere, Finland.

出版信息

J Neurosci Res. 1989 Nov;24(3):374-83. doi: 10.1002/jnr.490240306.

Abstract

The properties of [3H]glycine uptake and release were studied with cerebellar granule cells, 7-9 days in vitro, (DIV) and astrocytes, 14-15 DIV, in primary cultures. The uptake of glycine in both cell types consisted of a saturable high-affinity transport and nonsaturable diffusion. The transport constant (Km) and maximal velocity (V) were significantly higher in granule cells than in astrocytes. Uptake was strictly Na+-dependent and also markedly diminished in low-Cl medium. The specificity of the uptake was similar in both cell types. The spontaneous release of glycine from granule cells and astrocytes was fast. Homoexchange with extracellularly added glycine in granule cells suggests that the efflux is at least partly mediated via membrane transport sites in these cells. Kainate stimulated the release more effectively in neurons than in glial cells, the effect apparently being mediated by specific kainate-sensitive receptors in both cell types. The release was enhanced by veratridine and by depolarization of cell membranes by high K (50 mM) in both neurons and astrocytes. The potassium-stimulated release was partially Ca-dependent in neurons but Ca-independent in glial cells. The results suggest a functional role for glycine in both cerebellar astrocytes and glutamatergic granule cells.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验