Shu Yinan, Varga Zoltan, Kanchanakungwankul Siriluk, Zhang Linyao, Truhlar Donald G
Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States.
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
J Phys Chem A. 2022 Feb 24;126(7):992-1018. doi: 10.1021/acs.jpca.1c10583. Epub 2022 Feb 9.
Quantitative simulations of electronically nonadiabatic molecular processes require both accurate dynamics algorithms and accurate electronic structure information. Direct semiclassical nonadiabatic dynamics is expensive due to the high cost of electronic structure calculations, and hence it is limited to small systems, limited ensemble averaging, ultrafast processes, and/or electronic structure methods that are only semiquantitatively accurate. The cost of dynamics calculations can be made manageable if analytic fits are made to the electronic structure data, and such fits are most conveniently carried out in a diabatic representation because the surfaces are smooth and the couplings between states are smooth scalar functions. Diabatic representations, unlike the adiabatic ones produced by most electronic structure methods, are not unique, and finding suitable diabatic representations often involves time-consuming nonsystematic diabatization steps. The biggest drawback of using diabatic bases is that it can require large amounts of effort to perform a globally consistent diabatization, and one of our goals has been to develop methods to do this efficiently and automatically. In this Feature Article, we introduce the mathematical framework of diabatic representations, and we discuss diabatization methods, including adiabatic-to-diabatic transformations and recent progress toward the goal of automatization.
对电子非绝热分子过程进行定量模拟,既需要精确的动力学算法,也需要精确的电子结构信息。直接的半经典非绝热动力学计算成本高昂,因为电子结构计算成本很高,因此它仅限于小体系、有限的系综平均、超快过程以及/或者只是半定量精确的电子结构方法。如果对电子结构数据进行解析拟合,动力学计算的成本就可以得到控制,而且这种拟合在 diabatic 表象中进行最为方便,因为 diabatic 面是光滑的,态间耦合是光滑的标量函数。与大多数电子结构方法产生的绝热表象不同,diabatic 表象不是唯一的,找到合适的 diabatic 表象通常涉及耗时的非系统的 diabatic 化步骤。使用 diabatic 基的最大缺点是,进行全局一致的 diabatic 化可能需要大量的工作,我们的目标之一就是开发高效且自动进行 diabatic 化的方法。在这篇专题文章中,我们介绍了 diabatic 表象的数学框架,并讨论了 diabatic 化方法,包括绝热到 diabatic 的变换以及在自动化目标方面的最新进展。