Sun Lei, Hendon Christopher H, Minier Mikael A, Walsh Aron, Dincă Mircea
†Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
‡Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.
J Am Chem Soc. 2015 May 20;137(19):6164-7. doi: 10.1021/jacs.5b02897. Epub 2015 May 6.
Reaction of FeCl2 and H4DSBDC (2,5-disulfhydrylbenzene-1,4-dicarboxylic acid) leads to the formation of Fe2(DSBDC), an analogue of M2(DOBDC) (MOF-74, DOBDC(4-) = 2,5-dihydroxybenzene-1,4-dicarboxylate). The bulk electrical conductivity values of both Fe2(DSBDC) and Fe2(DOBDC) are ∼6 orders of magnitude higher than those of the Mn(2+) analogues, Mn2(DEBDC) (E = O, S). Because the metals are of the same formal oxidation state, the increase in conductivity is attributed to the loosely bound Fe(2+) β-spin electron. These results provide important insight for the rational design of conductive metal-organic frameworks, highlighting in particular the advantages of iron for synthesizing such materials.
氯化亚铁与H4DSBDC(2,5 - 二巯基苯 - 1,4 - 二羧酸)反应生成Fe2(DSBDC),它是M2(DOBDC)(MOF - 74,DOBDC(4 - ) = 2,5 - 二羟基苯 - 1,4 - 二羧酸盐)的类似物。Fe2(DSBDC)和Fe2(DOBDC)的体电导率值比Mn(2 + )类似物Mn2(DEBDC)(E = O,S)高约6个数量级。由于金属具有相同的形式氧化态,电导率的增加归因于松散结合的Fe(2 + )β - 自旋电子。这些结果为导电金属有机框架的合理设计提供了重要见解,特别突出了铁在合成此类材料方面的优势。