González Daniel, Espinosa Sara, Antiñolo María, Agúndez Marcelino, Cernicharo José, Willis Sydney, Garrod Robin T, Jiménez Elena
Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 1B, 13071 Ciudad Real, Spain.
Instituto de Investigación en Combustión y Contaminación Atmosférica, Universidad de Castilla-La Mancha, Camino de Moledores s/n, 13071 Ciudad Real, Spain.
ACS Earth Space Chem. 2024 Sep 16;8(10):1970-1981. doi: 10.1021/acsearthspacechem.4c00082. eCollection 2024 Oct 17.
Formamide (NHC(O)H) has been observed both in the interstellar medium (ISM), being identified as a potential precursor of prebiotic molecules in space, and in the Earth's atmosphere. In these environments where temperature is very distinct, hydroxyl (OH) radicals may play an important role in the degradation of NHC(O)H. Thus, in this work, we report for the first time the experimental study of the temperature dependence of the gas-phase removal of OH in the presence of NHC(O)H over the 11.7-353 K range. In the lowest temperature range (11.7-177.5 K), of interest for the ISM chemistry, the kinetic study was performed using a pulsed CRESU (French acronym for Reaction Kinetics in a Uniform Supersonic Flow) apparatus, while a thermostatized slow-flow reactor was employed in the kinetic study of the OH + NHC(O)H reaction over the 273-353 K range, of interest in the Earth's troposphere below room temperature. The pulsed laser photolysis at 248 nm of a suitable OH-precursor (hydrogen peroxide, -butyl hydroperoxide, or acetylacetone) was used to generate OH radicals in the reactor. The temporal evolution of OH was monitored by laser-induced fluorescence at 310 nm. An almost independent () between 273 and 353 K (temperatures of the Earth's troposphere extended to > 298 K) is reported, being the OH + NHC(O)H reaction the major degradation route with an atmospheric lifetime of around 1 day. At lower temperatures of interest in the ISM (11.7-177.5 K), the potential formation of NHC(O)H dimers was evaluated. Thermodynamically, under equilibrium conditions, formamide would be fully converted into the dimer in that range. However, the qualitative agreement of the observed increase of () with computational studies on the OH + NHC(O)H reaction down to 200 K let us to report, between 177.5 and 106.0 K, the following parameters commonly used in astrochemical modeling: α = (3.76 ± 0.62) × 10 cm s, β = (3.07 ± 0.11), and γ = 0. At 11.7 K, a kinetic model reproducing the experimental data indicates that formamide dimerization could be important, but the OH-reaction with the monomer would be fast, 4 × 10 cm s, and the OH-reaction with the dimer, relatively slow [(0.1-1.0) × 10 cm s]. Despite that, the impact of the gas-phase OH + NHC(O)H in the relative abundances of NHC(O)H in a dense molecular cloud ( ∼ 10 K) and after the warm-up phase in the surroundings of hot cores/corinos (here, 10-400 K) appears to be negligible.
甲酰胺(NHC(O)H)在星际介质(ISM)中被观测到,被认定为太空中益生元分子的潜在前体,同时也存在于地球大气中。在这些温度差异极大的环境中,羟基(OH)自由基可能在NHC(O)H的降解过程中发挥重要作用。因此,在本研究中,我们首次报告了在11.7 - 353 K温度范围内,NHC(O)H存在时气相中OH去除的温度依赖性的实验研究。在ISM化学感兴趣的最低温度范围(11.7 - 177.5 K),动力学研究使用了脉冲CRESU(均匀超音速流中反应动力学的法语首字母缩写)装置,而在273 - 353 K温度范围(地球对流层低于室温时感兴趣的温度范围)的OH + NHC(O)H反应的动力学研究中,则采用了恒温慢流反应器。通过在248 nm处对合适的OH前体(过氧化氢、叔丁基过氧化氢或乙酰丙酮)进行脉冲激光光解,在反应器中产生OH自由基。通过310 nm处的激光诱导荧光监测OH的时间演化。报告了在273和353 K之间(地球对流层温度扩展到>298 K)几乎独立的(),OH + NHC(O)H反应是主要的降解途径,大气寿命约为1天。在ISM感兴趣的较低温度(11.7 - 177.5 K)下,评估了NHC(O)H二聚体的潜在形成。从热力学角度看,在平衡条件下,甲酰胺在该温度范围内将完全转化为二聚体。然而,观测到的()增加与OH + NHC(O)H反应直至200 K的计算研究的定性一致性,使我们能够报告在177.5和106.0 K之间,天体化学建模中常用的以下参数:α = (3.76 ± 0.62) × 10 cm s,β = (3.07 ± 0.11),γ = 0。在11.7 K时,一个再现实验数据的动力学模型表明甲酰胺二聚化可能很重要,但OH与单体的反应会很快,为4 × 10 cm s,而OH与二聚体的反应相对较慢,为[(0.1 - 1.0) × 10 cm s]。尽管如此,气相中OH + NHC(O)H对致密分子云(约10 K)中NHC(O)H相对丰度以及热核/热芯周围环境升温阶段后(此处为10 - 至400 K)的影响似乎可以忽略不计。