Barber W C, Wessel J C, Nygard E, Iwanczyk J S
DxRay, Inc., Northridge, CA, USA ; Interon AS, Asker, Norway.
Interon AS, Asker, Norway.
Nucl Instrum Methods Phys Res A. 2015 Jun 1;784:531-537. doi: 10.1016/j.nima.2014.10.079.
We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high-flux ASICs with a two dimensional (2D) array of inputs for readout from the sensors. The sensors are guard ring free and have a 2D array of pixels and can be tiled in 2D while preserving pixel pitch. The 2D ASICs have four energy bins with a linear energy response across sufficient dynamic range for clinical CT and some NDT applications. The ASICs can also be tiled in 2D and are designed to fit within the active area of the sensors. We have measured several important performance parameters including; the output count rate (OCR) in excess of 20 million counts per second per square mm with a minimum loss of counts due to pulse pile-up, an energy resolution of 7 keV full width at half maximum (FWHM) across the entire dynamic range, and a noise floor about 20keV. This is achieved by directly interconnecting the ASIC inputs to the pixels of the CdZnTe sensors incurring very little input capacitance to the ASICs. We present measurements of the performance of the CdTe and CdZnTe sensors including the OCR, FWHM energy resolution, noise floor, as well as the temporal stability and uniformity under the rapidly varying high flux expected in CT and NDT applications.
我们正在开发室温化合物半导体探测器,用于能量分辨的高通量单X射线光子计数光谱计算机断层扫描(CT),包括用于医学应用的纳米颗粒造影剂功能成像和用于安全应用的无损检测(NDT)。能量分辨光子计数可通过对CT中特定成像任务进行最佳能量加权来降低患者剂量,通过CT中金属纳米颗粒的光谱成像增强功能对比度,以及通过CT和NDT中的多基函数材料分解进行成分分析。这些应用会产生来自X射线发生器并传递到探测器的高输入计数率。因此,为了在这些应用中实现能量分辨单光子计数,必须在所需的空间分辨率和应用所需的动态范围内实现能量色散探测器的高输出计数率(OCR)。必须在足够的应用视野(FOV)下获得OCR、空间分辨率和动态范围方面所需的性能,因此需要像素阵列拼接和扫描技术。室温碲化镉(CdTe)和碲锌镉(CdZnTe)化合物半导体作为直接转换X射线传感器运行时,如果传感器设计为在所需能量和空间分辨率下在应用的X射线能量范围内快速形成信号,并且具有足够高的探测量子效率(DQE),那么当连接到具有快速峰值时间且每个像素有多个固定阈值的专用集成电路(ASIC)时,可以提供所需的速度。我们已经开发了使用针对临床CT和安全NDT进行优化的像素化CdTe和CdZnTe半导体的高通量能量分辨光子计数X射线成像阵列传感器。我们还制造了具有二维(2D)输入阵列的高通量ASIC,用于从传感器进行读出。这些传感器无保护环,具有2D像素阵列,并且可以在2D中拼接,同时保持像素间距。2D ASIC有四个能量区间,在足够的动态范围内具有线性能量响应,适用于临床CT和一些NDT应用。这些ASIC也可以在2D中拼接,并且设计为适合传感器的有效区域。我们测量了几个重要的性能参数,包括:每秒每平方毫米超过2000万计数的输出计数率(OCR),由于脉冲堆积导致的计数损失最小,在整个动态范围内半高宽(FWHM)为7keV的能量分辨率,以及约20keV的本底噪声。这是通过将ASIC输入直接互连到CdZnTe传感器的像素来实现的,从而使ASIC的输入电容非常小。我们展示了CdTe和CdZnTe传感器的性能测量结果,包括OCR、FWHM能量分辨率、本底噪声,以及在CT和NDT应用中预期的快速变化的高通量下的时间稳定性和均匀性。