Suppr超能文献

狭缝表面静电纺丝:一种为高通量制备核壳纤维而开发的新工艺。

Slit-surface electrospinning: a novel process developed for high-throughput fabrication of core-sheath fibers.

作者信息

Yan Xuri, Marini John, Mulligan Robert, Deleault Abby, Sharma Upma, Brenner Michael P, Rutledge Gregory C, Freyman Toby, Pham Quynh P

机构信息

Arsenal Medical, Inc., Watertown, Massachusetts, United States of America.

School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts, United States of America.

出版信息

PLoS One. 2015 May 4;10(5):e0125407. doi: 10.1371/journal.pone.0125407. eCollection 2015.

Abstract

In this work, we report on the development of slit-surface electrospinning--a process that co-localizes two solutions along a slit surface to spontaneously emit multiple core-sheath cone-jets at rates of up to 1 L/h. To the best of our knowledge, this is the first time that production of electrospun core-sheath fibers has been scaled to this magnitude. Fibers produced in this study were defect-free (i.e. non-beaded) and core-sheath geometry was visually confirmed under scanning electron microscopy. The versatility of our system was demonstrated by fabrication of (1) fibers encapsulating a drug, (2) bicomponent fibers, (3) hollow fibers, and (4) fibers from a polymer that is not normally electrospinnable. Additionally, we demonstrate control of the process by modulating parameters such as flow rate, solution viscosity, and fixture design. The technological achievements demonstrated in this work significantly advance core-sheath electrospinning towards commercial and manufacturing viability.

摘要

在这项工作中,我们报告了狭缝表面静电纺丝技术的进展——该过程可使两种溶液在狭缝表面共定位,从而以高达1升/小时的速率自发喷出多个核壳锥形射流。据我们所知,这是首次将静电纺核壳纤维的产量扩大到如此规模。本研究中生产的纤维无缺陷(即无珠粒),并且通过扫描电子显微镜在视觉上确认了核壳结构。我们的系统的多功能性通过以下几种纤维的制备得到了证明:(1)包裹药物的纤维、(2)双组分纤维、(3)中空纤维以及(4)由通常不可静电纺丝的聚合物制成的纤维。此外,我们通过调节诸如流速、溶液粘度和固定装置设计等参数来证明对该过程的控制。这项工作中展示的技术成果显著推动了核壳静电纺丝技术朝着商业和制造可行性方向发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e876/4418707/8ba0d4eebe40/pone.0125407.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验