Whitaker Neal, Chen Yuqing, Jakubowski Simon J, Sarkar Mayukh K, Li Feng, Christie Peter J
Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, USA.
Department of Natural Sciences, University of Houston Downtown, Houston, Texas, USA.
J Bacteriol. 2015 Jul;197(14):2335-49. doi: 10.1128/JB.00189-15. Epub 2015 May 4.
Bacterial type IV coupling proteins (T4CPs) bind and mediate the delivery of DNA substrates through associated type IV secretion systems (T4SSs). T4CPs consist of a transmembrane domain, a conserved nucleotide-binding domain (NBD), and a sequence-variable helical bundle called the all-alpha domain (AAD). In the T4CP structural prototype, plasmid R388-encoded TrwB, the NBD assembles as a homohexamer resembling RecA and DNA ring helicases, and the AAD, which sits at the channel entrance of the homohexamer, is structurally similar to N-terminal domain 1 of recombinase XerD. Here, we defined the contributions of AADs from the Agrobacterium tumefaciens VirD4 and Enterococcus faecalis PcfC T4CPs to DNA substrate binding. AAD deletions abolished DNA transfer, whereas production of the AAD in otherwise wild-type donor strains diminished the transfer of cognate but not heterologous substrates. Reciprocal swaps of AADs between PcfC and VirD4 abolished the transfer of cognate DNA substrates, although strikingly, the VirD4-AADPcfC chimera (VirD4 with the PcfC AAD) supported the transfer of a mobilizable plasmid. Purified AADs from both T4CPs bound DNA substrates without sequence preference but specifically bound cognate processing proteins required for cleavage at origin-of-transfer sequences. The soluble domains of VirD4 and PcfC lacking their AADs neither exerted negative dominance in vivo nor specifically bound cognate processing proteins in vitro. Our findings support a model in which the T4CP AADs contribute to DNA substrate selection through binding of associated processing proteins. Furthermore, MOBQ plasmids have evolved a docking mechanism that bypasses the AAD substrate discrimination checkpoint, which might account for their capacity to promiscuously transfer through many different T4SSs.
For conjugative transfer of mobile DNA elements, members of the VirD4/TraG/TrwB receptor superfamily bind cognate DNA substrates through mechanisms that are largely undefined. Here, we supply genetic and biochemical evidence that a helical bundle, designated the all-alpha domain (AAD), of T4SS receptors functions as a substrate specificity determinant. We show that AADs from two substrate receptors, Agrobacterium tumefaciens VirD4 and Enterococcus faecalis PcfC, bind DNA without sequence or strand preference but specifically bind the cognate relaxases responsible for nicking and piloting the transferred strand through the T4SS. We propose that interactions of receptor AADs with DNA-processing factors constitute a basis for selective coupling of mobile DNA elements with type IV secretion channels.
细菌IV型偶联蛋白(T4CPs)通过相关的IV型分泌系统(T4SSs)结合并介导DNA底物的传递。T4CPs由一个跨膜结构域、一个保守的核苷酸结合结构域(NBD)和一个称为全α结构域(AAD)的序列可变螺旋束组成。在T4CP结构原型、质粒R388编码的TrwB中,NBD组装成一个类似于RecA和DNA环解旋酶的同型六聚体,位于同型六聚体通道入口处的AAD在结构上类似于重组酶XerD的N端结构域1。在这里,我们确定了根癌土壤杆菌VirD4和粪肠球菌PcfC T4CPs的AAD对DNA底物结合的贡献。AAD缺失消除了DNA转移,而在其他方面为野生型供体菌株中产生AAD则减少了同源而非异源底物的转移。PcfC和VirD4之间AAD的相互交换消除了同源DNA底物的转移,尽管引人注目的是,VirD4-AADPcfC嵌合体(具有PcfC AAD的VirD4)支持可移动质粒的转移。从两种T4CPs中纯化的AADs无序列偏好地结合DNA底物,但特异性结合在转移起始序列处进行切割所需的同源加工蛋白。缺乏AAD的VirD4和PcfC的可溶性结构域在体内既不发挥负显性作用,在体外也不特异性结合同源加工蛋白。我们的研究结果支持了一个模型,即T4CP AADs通过结合相关加工蛋白来促进DNA底物选择。此外,MOBQ质粒已经进化出一种对接机制,绕过了AAD底物识别检查点,这可能解释了它们能够通过许多不同的T4SSs进行广泛转移的能力。
对于可移动DNA元件的接合转移,VirD4/TraG/TrwB受体超家族的成员通过很大程度上未明确的机制结合同源DNA底物。在这里,我们提供了遗传和生化证据,表明T4SS受体的一个螺旋束,即全α结构域(AAD),作为底物特异性决定因素发挥作用。我们表明,来自两种底物受体,根癌土壤杆菌VirD4和粪肠球菌PcfC的AADs无序列或链偏好地结合DNA,但特异性结合负责在T4SS中切割和引导转移链的同源松弛酶。我们提出,受体AADs与DNA加工因子的相互作用构成了可移动DNA元件与IV型分泌通道选择性偶联的基础。