Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, CZ-16200, Prague, Czech Republic.
Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Br˘ehová 7, CZ-11519 Prague, Czech Republic.
Small. 2015 Aug 12;11(30):3686-93. doi: 10.1002/smll.201500092. Epub 2015 May 3.
A single atomic manipulation on the delta-doped B:Si(111)-(√3x√3)R30° surface using a low temperature dynamic atomic force microscopy based on the Kolibri sensor is investigated. Through a controlled vertical displacement of the probe, a single Si adatom in order to open a vacancy is removed. It is shown that this process is completely reversible, by accurately placing a Si atom back into the vacancy site. In addition, density functional theory simulations are carried out to understand the underlying mechanism of the atomic manipulation in detail. This process also rearranges the atoms at the tip apex, which can be effectively sharpened in this way. Such sharper tips allow for a deeper look into the Si adatom vacancy site. Namely, high-resolution images of the vacancy showing subsurface Si dangling bond triplets, which surround the substitutional B dopant atom in the first bilayer, are achieved.
使用基于 Kolibri 传感器的低温动态原子力显微镜,对 delta 掺杂的 B:Si(111)-(√3x√3)R30°表面进行了单个原子操作的研究。通过探针的受控垂直位移,移除了一个用于打开空位的单个 Si adatom。通过准确地将 Si 原子放回空位位置,表明该过程是完全可逆的。此外,还进行了密度泛函理论模拟,以详细了解原子操作的基础机制。该过程还会重新排列尖端顶点处的原子,从而可以有效地对其进行锐化。这样更锋利的尖端可以更深入地观察 Si adatoms 空位。具体来说,实现了空位的高分辨率图像,显示了在第一层中取代的 B 掺杂原子周围的悬空 Si 键三键。