Lavenus Julien, Goh Tatsuaki, Guyomarc'h Soazig, Hill Kristine, Lucas Mikael, Voß Ute, Kenobi Kim, Wilson Michael H, Farcot Etienne, Hagen Gretchen, Guilfoyle Thomas J, Fukaki Hidehiro, Laplaze Laurent, Bennett Malcolm J
Institut de Recherche pour le Développement, UMR DIADE, 34394 Montpellier cedex 5, France Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom.
Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan.
Plant Cell. 2015 May;27(5):1368-88. doi: 10.1105/tpc.114.132993. Epub 2015 May 5.
A large number of genes involved in lateral root (LR) organogenesis have been identified over the last decade using forward and reverse genetic approaches in Arabidopsis thaliana. Nevertheless, how these genes interact to form a LR regulatory network largely remains to be elucidated. In this study, we developed a time-delay correlation algorithm (TDCor) to infer the gene regulatory network (GRN) controlling LR primordium initiation and patterning in Arabidopsis from a time-series transcriptomic data set. The predicted network topology links the very early-activated genes involved in LR initiation to later expressed cell identity markers through a multistep genetic cascade exhibiting both positive and negative feedback loops. The predictions were tested for the key transcriptional regulator AUXIN RESPONSE FACTOR7 node, and over 70% of its targets were validated experimentally. Intriguingly, the predicted GRN revealed a mutual inhibition between the ARF7 and ARF5 modules that would control an early bifurcation between two cell fates. Analyses of the expression pattern of ARF7 and ARF5 targets suggest that this patterning mechanism controls flanking and central zone specification in Arabidopsis LR primordia.
在过去十年中,利用正向和反向遗传学方法,在拟南芥中已鉴定出大量参与侧根(LR)器官发生的基因。然而,这些基因如何相互作用以形成LR调控网络在很大程度上仍有待阐明。在本研究中,我们开发了一种时间延迟相关算法(TDCor),用于从时间序列转录组数据集中推断控制拟南芥LR原基起始和模式形成的基因调控网络(GRN)。预测的网络拓扑结构通过一个具有正反馈和负反馈环的多步遗传级联,将参与LR起始的早期激活基因与后期表达的细胞身份标记联系起来。对关键转录调节因子生长素响应因子7(AUXIN RESPONSE FACTOR7)节点的预测进行了测试,其超过70%的靶标通过实验得到验证。有趣的是,预测的GRN揭示了ARF7和ARF5模块之间的相互抑制,这将控制两种细胞命运之间的早期分歧。对ARF7和ARF5靶标表达模式的分析表明,这种模式形成机制控制了拟南芥LR原基中的侧翼和中央区域特化。