Caselli Francesca, Ferrario Carlotta, Beretta Veronica Maria, Tondepu Sri Amarnadh Gupta, Dumas Renaud, Herrera-Ubaldo Humberto, de Folter Stefan, Kater Martin M, Gregis Veronica
Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, 20133, Italy.
Laboratoire Physiologie Cellulaire et Végétale, Département de Biologie Structurale et Cellulaire Intégrée, Université Grenoble Alpes, Centre national de la recherche scientifique, Commissariat à l'énergie atomique et aux énergies alternatives, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Grenoble, F-38054, France.
Plant J. 2025 Mar;121(5):e70041. doi: 10.1111/tpj.70041.
Inflorescence architecture is established during the early stages of reproductive development and depends on the activity and identity of meristems. In Arabidopsis thaliana, the floral meristems (FMs), which will develop into flowers, arise with precise spatiotemporal regulation from the inflorescence meristem (IM). The outcome of this process is a geometrically organized structure characterized by a reiterated pattern called phyllotaxis, in which successive organs arise at specific divergence angles of 137.5°. Here we show that REM34 and REM35 transcription factors control phyllotactic patterning through cooperative interaction with ARF7 and ARF19, influencing the cell cycle rate and thus the IM dimension. Our proposed model suggests that ARF7 and ARF19, whose activity is triggered by auxin accumulation, interact with REM34 and REM35 to regulate two auxin-induced genes, LBD18 and PUCHI, whose mutants phenocopy the permutated phyllotactic pattern of rem34 rem35 and arf7 arf19. This complex also restricts cell cycling activity to specific areas of the meristem, indirectly determining its dimension and ultimately establishing FM positioning and phyllotaxis. Reiterative patterns are found in morphogenetic processes of complex organisms, and phyllotaxis has been employed to understand the mechanisms behind this regularity. Our research broadens the knowledge on this mechanism which is also strictly correlated with yield.
花序结构在生殖发育的早期阶段建立,并取决于分生组织的活性和特性。在拟南芥中,将发育成花的花分生组织(FMs)从花序分生组织(IM)中以精确的时空调控方式产生。这一过程的结果是形成一种几何组织化的结构,其特征是具有一种称为叶序的重复模式,其中连续的器官以137.5°的特定发散角出现。在这里,我们表明REM34和REM35转录因子通过与ARF7和ARF19的协同相互作用来控制叶序模式,影响细胞周期速率,从而影响IM的大小。我们提出的模型表明,其活性由生长素积累触发的ARF7和ARF19与REM34和REM35相互作用,以调节两个生长素诱导基因LBD18和PUCHI,其突变体表现出与rem34 rem35和arf7 arf19的叶序模式错乱相似的表型。这种复合体还将细胞周期活性限制在分生组织的特定区域,间接决定其大小,并最终确定FM的定位和叶序。重复模式在复杂生物体的形态发生过程中被发现,叶序已被用于理解这种规律性背后的机制。我们的研究拓宽了对这一与产量也密切相关的机制的认识。