Jia Dongya, Jolly Mohit Kumar, Boareto Marcelo, Parsana Princy, Mooney Steven M, Pienta Kenneth J, Levine Herbert, Ben-Jacob Eshel
Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX 77005, USA.
Oncotarget. 2015 Jun 20;6(17):15436-48. doi: 10.18632/oncotarget.3623.
Metastasis involves multiple cycles of Epithelial-to-Mesenchymal Transition (EMT) and its reverse-MET. Cells can also undergo partial transitions to attain a hybrid epithelial/mesenchymal (E/M) phenotype that has maximum cellular plasticity and allows migration of Circulating Tumor Cells (CTCs) as a cluster. Hence, deciphering the molecular players helping to maintain the hybrid E/M phenotype may inform anti-metastasis strategies. Here, we devised a mechanism-based mathematical model to couple the transcription factor OVOL with the core EMT regulatory network miR-200/ZEB that acts as a three-way switch between the E, E/M and M phenotypes. We show that OVOL can modulate cellular plasticity in multiple ways - restricting EMT, driving MET, expanding the existence of the hybrid E/M phenotype and turning both EMT and MET into two-step processes. Our theoretical framework explains the differences between the observed effects of OVOL in breast and prostate cancer, and provides a platform for investigating additional signals during metastasis.
转移涉及上皮-间质转化(EMT)及其反向过程间质-上皮转化(MET)的多个循环。细胞也可以经历部分转化,以获得具有最大细胞可塑性的混合上皮/间质(E/M)表型,并允许循环肿瘤细胞(CTC)以簇的形式迁移。因此,解读有助于维持混合E/M表型的分子机制可能为抗转移策略提供依据。在此,我们设计了一种基于机制的数学模型,将转录因子OVOL与核心EMT调控网络miR-200/ZEB耦合,该网络在E、E/M和M表型之间起三向开关的作用。我们发现,OVOL可以通过多种方式调节细胞可塑性——限制EMT、驱动MET、扩大混合E/M表型的存在,并将EMT和MET都转变为两步过程。我们的理论框架解释了在乳腺癌和前列腺癌中观察到的OVOL效应之间的差异,并为研究转移过程中的其他信号提供了一个平台。