Center for Theoretical Biological Physics, Departments of.
Center for Theoretical Biological Physics, Departments of Bioengineering.
Cancer Res. 2014 Sep 1;74(17):4574-87. doi: 10.1158/0008-5472.CAN-13-3367.
Understanding epithelial-mesenchymal transitions (EMT) during cancer metastasis remains a major challenge in modern biology. Recent observations of cell behavior together with progress in mapping the underlying regulatory genetic networks led to new understandings of carcinoma metastasis. It is now established that the genetic network that regulates the EMT also enables an epithelial-mesenchymal hybrid phenotype. These hybrid cells possess mixed carcinoma epithelial and mesenchymal characteristics that enable specialized capabilities such as collective cell migration. On the gene network perspective, a four-component decision unit composed of two highly interconnected chimeric modules--the miR34/SNAIL and the miR200/ZEB mutual-inhibition feedback circuits--regulates the coexistence of and transitions between the different phenotypes. Here, we present a new tractable theoretical framework to model and decode the underlying principles governing the operation of the regulatory unit. Our approach connects the knowledge about intracellular pathways with observations of cellular behavior and advances toward understanding the logic of cancer decision-making. We found that the miR34/SNAIL module acts as an integrator while the miR200/ZEB module acts as a three-way switch. Consequently, the combined unit can give rise to three phenotypes (stable states): (i) a high miR200 and low ZEB, or (1, 0) state; (ii) a low miR200 and high ZEB, or (0, 1) state; and (iii) a medium miR200 and medium ZEB, or (½, ½) state. We associate these states with the epithelial, mesenchymal, and hybrid phenotypes, respectively. We reflect on the consistency between our theoretical predictions and recent observations in several types of carcinomas and suggest new testable predictions. See all articles in this Cancer Research section,
理解癌症转移过程中的上皮-间充质转化 (EMT) 仍然是现代生物学的主要挑战。最近对细胞行为的观察以及对潜在调控遗传网络的研究进展,使人们对癌转移有了新的认识。现在已经确定,调节 EMT 的遗传网络也使上皮-间充质混合表型成为可能。这些混合细胞具有混合的癌上皮和间充质特征,使它们具有诸如集体细胞迁移等专门的能力。从基因网络的角度来看,由两个高度相互连接的嵌合模块——miR34/SNAIL 和 miR200/ZEB 相互抑制反馈回路组成的四个组件决策单元,调节不同表型的共存和转化。在这里,我们提出了一个新的可处理的理论框架来模拟和解码调节单元操作的基本原理。我们的方法将细胞内途径的知识与细胞行为的观察联系起来,并朝着理解癌症决策的逻辑方向前进。我们发现 miR34/SNAIL 模块作为整合器,而 miR200/ZEB 模块作为三通开关。因此,组合单元可以产生三种表型(稳定状态):(i)高 miR200 和低 ZEB,或(1,0)状态;(ii)低 miR200 和高 ZEB,或(0,1)状态;和(iii)中 miR200 和中 ZEB,或(½,½)状态。我们将这些状态分别与上皮、间充质和混合表型相关联。我们将我们的理论预测与几种类型的癌中的最新观察结果进行了比较,并提出了新的可测试的预测。查看癌症研究部分中的所有文章,