Botyanszki Zsofia, Tay Pei Kun R, Nguyen Peter Q, Nussbaumer Martin G, Joshi Neel S
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138.
Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, 02138.
Biotechnol Bioeng. 2015 Oct;112(10):2016-24. doi: 10.1002/bit.25638. Epub 2015 May 20.
Biocatalytic transformations generally rely on purified enzymes or whole cells to perform complex transformations that are used on industrial scale for chemical, drug, and biofuel synthesis, pesticide decontamination, and water purification. However, both of these systems have inherent disadvantages related to the costs associated with enzyme purification, the long-term stability of immobilized enzymes, catalyst recovery, and compatibility with harsh reaction conditions. We developed a novel strategy for producing rationally designed biocatalytic surfaces based on Biofilm Integrated Nanofiber Display (BIND), which exploits the curli system of E. coli to create a functional nanofiber network capable of covalent immobilization of enzymes. This approach is attractive because it is scalable, represents a modular strategy for site-specific enzyme immobilization, and has the potential to stabilize enzymes under denaturing environmental conditions. We site-specifically immobilized a recombinant α-amylase, fused to the SpyCatcher attachment domain, onto E. coli curli fibers displaying complementary SpyTag capture domains. We characterized the effectiveness of this immobilization technique on the biofilms and tested the stability of immobilized α-amylase in unfavorable conditions. This enzyme-modified biofilm maintained its activity when exposed to a wide range of pH and organic solvent conditions. In contrast to other biofilm-based catalysts, which rely on high cellular metabolism, the modified curli-based biofilm remained active even after cell death due to organic solvent exposure. This work lays the foundation for a new and versatile method of using the extracellular polymeric matrix of E. coli for creating novel biocatalytic surfaces.
生物催化转化通常依靠纯化的酶或完整细胞来进行复杂的转化反应,这些反应在工业规模上用于化学、药物和生物燃料合成、农药净化及水净化。然而,这两种系统都存在固有缺点,涉及酶纯化成本、固定化酶的长期稳定性、催化剂回收以及与苛刻反应条件的兼容性。我们基于生物膜整合纳米纤维展示(BIND)开发了一种生产合理设计的生物催化表面的新策略,该策略利用大肠杆菌的卷曲系统创建一个能够共价固定酶的功能性纳米纤维网络。这种方法具有吸引力,因为它可扩展,代表了一种用于位点特异性酶固定化的模块化策略,并且有可能在变性环境条件下稳定酶。我们将与SpyCatcher附着结构域融合的重组α淀粉酶位点特异性地固定在展示互补SpyTag捕获结构域的大肠杆菌卷曲纤维上。我们表征了这种固定化技术在生物膜上的有效性,并测试了固定化α淀粉酶在不利条件下的稳定性。当暴露于广泛的pH和有机溶剂条件时,这种酶修饰的生物膜保持其活性。与其他依赖高细胞代谢的基于生物膜的催化剂不同,即使在因有机溶剂暴露导致细胞死亡后,基于卷曲的修饰生物膜仍保持活性。这项工作为利用大肠杆菌的细胞外聚合物基质创建新型生物催化表面的一种新的通用方法奠定了基础。