State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, Minnesota 55108, USA.
ACS Appl Mater Interfaces. 2021 Feb 10;13(5):6168-6179. doi: 10.1021/acsami.0c18298. Epub 2021 Jan 27.
Developing novel immobilization methods to maximize the catalytic performance of enzymes has been a permanent pursuit of scientific researchers. Engineered biofilms have attracted great concern as surface display platforms for enzyme immobilization. However, current biological conjugation methods, such as the SpyTag/SpyCatcher tagging pair, that immobilize enzymes onto biofilms seriously hamper enzymatic performance. Through phage display screening of lipase-binding peptides (LBPs) and co-expression of CsgB (nucleation protein of curli nanofibers) and LBP2-modified CsgA (CsgALBP2, major structural subunit of curli nanofibers) proteins, we developed BL21::ΔCsgA-CsgB-CsgALBP2 (LBP2-functionalized) biofilms as surface display platforms to maximize the catalytic performance of lipase (Lip181). After immobilization onto LBP2-functionalized biofilm materials, Lip181 showed increased thermostability, pH, and storage stability. Surprisingly, the relative activity of immobilized Lip181 increased from 8.43 to 11.33 U/mg through this immobilization strategy. Furthermore, the highest loading of lipase on LBP2-functionalized biofilm materials reached up to 27.90 mg/g of wet biofilm materials, equivalent to 210.49 mg/g of dry biofilm materials, revealing their potential as a surface with high enzyme loading capacity. Additionally, immobilized Lip181 was used to hydrolyze phthalic acid esters, and the hydrolysis rate against dibutyl phthalate was up to 100%. Thus, LBP2-mediated immobilization of lipases was demonstrated to be far more advantageous than the traditional SpyTag/SpyCatcher strategy in maximizing enzymatic performance, thereby providing a better alternative for enzyme immobilization onto biofilms.
开发新型固定化方法以最大限度地提高酶的催化性能一直是科学研究人员的永恒追求。工程化生物膜作为酶固定化的表面展示平台引起了极大的关注。然而,目前用于将酶固定到生物膜上的生物偶联方法,如 SpyTag/SpyCatcher 标记对,严重阻碍了酶的性能。通过噬菌体展示筛选脂肪酶结合肽(LBPs)和共表达 CsgB(卷曲纳米纤维的成核蛋白)和 LBP2 修饰的 CsgA(卷曲纳米纤维的主要结构亚基 CsgALBP2)蛋白,我们开发了 BL21::ΔCsgA-CsgB-CsgALBP2(LBP2 功能化)生物膜作为表面展示平台,以最大限度地提高脂肪酶(Lip181)的催化性能。固定到 LBP2 功能化生物膜材料后,Lip181 显示出增加的热稳定性、pH 值和储存稳定性。令人惊讶的是,通过这种固定化策略,固定化 Lip181 的相对活性从 8.43 增加到 11.33 U/mg。此外,脂肪酶在 LBP2 功能化生物膜材料上的最高负载量高达 27.90 mg/g 湿生物膜材料,相当于 210.49 mg/g 干生物膜材料,表明它们具有作为高酶负载能力表面的潜力。此外,固定化 Lip181 被用于水解邻苯二甲酸酯,对邻苯二甲酸二丁酯的水解速率高达 100%。因此,与传统的 SpyTag/SpyCatcher 策略相比,LBP2 介导的脂肪酶固定化在最大限度地提高酶性能方面具有明显优势,从而为将酶固定到生物膜上提供了更好的选择。