Suppr超能文献

临床数据申请表中都问了些什么?对表格进行多地点主题分析以更好地支持数据获取

What Is Asked in Clinical Data Request Forms? A Multi-site Thematic Analysis of Forms Towards Better Data Access Support.

作者信息

Hanauer David A, Hruby Gregory W, Fort Daniel G, Rasmussen Luke V, Mendonça Eneida A, Weng Chunhua

机构信息

Dept. of Pediatrics, University of Michigan, Ann Arbor, MI ; School of Information, University of Michigan, Ann Arbor, MI.

Dept. of Biomedical Informatics, Columbia University, New York, NY.

出版信息

AMIA Annu Symp Proc. 2014 Nov 14;2014:616-25. eCollection 2014.

Abstract

Many academic medical centers have aggregated data from multiple clinical systems into centralized repositories. These repositories can then be queried by skilled data analysts who act as intermediaries between the data stores and the research teams. To obtain data, researchers are often expected to complete a data request form. Such forms are meant to support record-keeping and, most importantly, provide a means for conveying complex data needs in a clear and understandable manner. Yet little is known about how data request forms are constructed and how effective they are likely to be. We conducted a content analysis of ten data request forms from CTSA-supported institutions. We found that most of the forms over-emphasized the collection of metadata that were not considered germane to the actual data needs. Based on our findings, we provide recommendations to improve the quality of data request forms in support of clinical and translational research.

摘要

许多学术医疗中心已将来自多个临床系统的数据汇总到中央存储库中。然后,熟练的数据分析师可以查询这些存储库,他们充当数据存储与研究团队之间的中介。为了获取数据,研究人员通常需要填写数据请求表。此类表格旨在支持记录保存,最重要的是,提供一种以清晰易懂的方式传达复杂数据需求的方法。然而,对于数据请求表是如何构建的以及它们可能有多有效,人们知之甚少。我们对来自CTSA支持机构的十份数据请求表进行了内容分析。我们发现,大多数表格过度强调收集与实际数据需求无关的元数据。基于我们的研究结果,我们提出了一些建议,以提高数据请求表的质量,以支持临床和转化研究。

相似文献

2
Understanding enterprise data warehouses to support clinical and translational research.
J Am Med Inform Assoc. 2020 Jul 1;27(9):1352-1358. doi: 10.1093/jamia/ocaa089.
3
5
Clinical Translational Science Awards: opportunities and challenges for nurse scientists.
Nurs Outlook. 2008 May-Jun;56(3):132-137.e4. doi: 10.1016/j.outlook.2008.03.006.
6
Practices and perspectives on building integrated data repositories: results from a 2010 CTSA survey.
J Am Med Inform Assoc. 2012 Jun;19(e1):e119-24. doi: 10.1136/amiajnl-2011-000508. Epub 2012 Mar 21.
10
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

1
Amplifying Domain Expertise in Clinical Data Pipelines.
JMIR Med Inform. 2020 Nov 5;8(11):e19612. doi: 10.2196/19612.
2
A multi-site cognitive task analysis for biomedical query mediation.
Int J Med Inform. 2016 Sep;93:74-84. doi: 10.1016/j.ijmedinf.2016.06.006. Epub 2016 Jun 16.
3
A data-driven concept schema for defining clinical research data needs.
Int J Med Inform. 2016 Jul;91:1-9. doi: 10.1016/j.ijmedinf.2016.03.008. Epub 2016 Apr 2.
4
Leveraging dialog systems research to assist biomedical researchers' interrogation of Big Clinical Data.
J Biomed Inform. 2016 Jun;61:176-84. doi: 10.1016/j.jbi.2016.04.003. Epub 2016 Apr 8.
5
DREAM: Classification scheme for dialog acts in clinical research query mediation.
J Biomed Inform. 2016 Feb;59:89-101. doi: 10.1016/j.jbi.2015.11.011. Epub 2015 Nov 30.

本文引用的文献

1
Does access modality matter? Evaluation of validity in reusing clinical care data.
AMIA Annu Symp Proc. 2013 Nov 16;2013:278-83. eCollection 2013.
2
Use of databases for clinical research.
Arch Dis Child. 2014 Jun;99(6):587-9. doi: 10.1136/archdischild-2013-304466. Epub 2014 Jan 31.
3
Characterization of the biomedical query mediation process.
AMIA Jt Summits Transl Sci Proc. 2013 Mar 18;2013:89-93. eCollection 2013.
4
Harvest: an open platform for developing web-based biomedical data discovery and reporting applications.
J Am Med Inform Assoc. 2014 Mar-Apr;21(2):379-83. doi: 10.1136/amiajnl-2013-001825. Epub 2013 Oct 16.
5
Some experiences and opportunities for big data in translational research.
Genet Med. 2013 Oct;15(10):802-9. doi: 10.1038/gim.2013.121. Epub 2013 Sep 5.
7
Adoption of electronic health records grows rapidly, but fewer than half of US hospitals had at least a basic system in 2012.
Health Aff (Millwood). 2013 Aug;32(8):1478-85. doi: 10.1377/hlthaff.2013.0308. Epub 2013 Jul 9.
9
Accessing electronic administrative health data for research takes time.
Arch Dis Child. 2013 May;98(5):391-2. doi: 10.1136/archdischild-2013-303730. Epub 2013 Feb 28.
10
Roadmap for the development of the University of North Carolina at Chapel Hill Genitourinary OncoLogy Database--UNC GOLD.
Urol Oncol. 2014 Jan;32(1):32.e1-9. doi: 10.1016/j.urolonc.2012.11.019. Epub 2013 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验